Content

定义 \(n\) 个数对 \((a_1,b_1),(a_2,b_2),(a_3,b_3),...,(a_n,b_n)\) 的 \(\text{WCD}\) 为能够整除每个数对中至少一个数的 \(>1\) 的整数。现在,给出 \(n\) 个数对,请找出它们的 \(\text{WCD}\),或者这 \(n\) 个数对没有符合要求的 \(\text{WCD}\)。

数据范围:\(1\leqslant n\leqslant 1.5\times 10^5,2\leqslant a_i,b_i\leqslant 2\times 10^9\)。

Solution

我们先把第一个数对的质因子分解出来,然后再在后面找是否有不能够满足条件的质因子,有的话就删除,否则就保留着。最后看是否还有剩下的质因子即可。

Code

int n, pr[150007];

int main() {
n = Rint;
F(i, 1, n) {
int x = Rint, y = Rint;
if(i == 1) {
F(j, 2, sqrt(x)) if(!(x % j)) {pr[++pr[0]] = j; while(!(x % j)) x /= j;}
if(x != 1) pr[++pr[0]] = x;
F(j, 2, sqrt(y)) if(!(y % j)) {pr[++pr[0]] = j; while(!(y % j)) y /= j;}
if(y != 1) pr[++pr[0]] = y;
} else F(j, 1, pr[0]) if(!pr[j]) continue; else if(x % pr[j] && y % pr[j]) pr[j] = 0;
}
F(i, 1, pr[0]) if(pr[i]) return printf("%d", pr[i]), 0;
printf("-1");
return 0;
}

CF1025B Weakened Common Divisor 题解的更多相关文章

  1. CF1025B Weakened Common Divisor 数学

    Weakened Common Divisor time limit per test 1.5 seconds memory limit per test 256 megabytes input st ...

  2. CF1025B Weakened Common Divisor【数论/GCD/思维】

    #include<cstdio> #include<string> #include<cstdlib> #include<cmath> #include ...

  3. CF1025B Weakened Common Divisor

    思路: 首先选取任意一对数(a, b),分别将a,b进行因子分解得到两个因子集合然后取并集(无需计算所有可能的因子,只需得到不同的质因子即可),之后再暴力一一枚举该集合中的元素是否满足条件. 时间复杂 ...

  4. codeforces#505--B Weakened Common Divisor

    B. Weakened Common Divisor time limit per test 1.5 seconds memory limit per test 256 megabytes input ...

  5. CF #505 B Weakened Common Divisor(数论)题解

    题意:给你n组,每组两个数字,要你给出一个数,要求这个是每一组其中一个数的因数(非1),给出任意满足的一个数,不存在则输出-1. 思路1:刚开始乱七八糟暴力了一下果断超时,然后想到了把每组两个数相乘, ...

  6. 【Codeforces Round #505 (rated, Div. 1 + Div. 2, based on VK Cup 2018 Final) B】Weakened Common Divisor

    [链接] 我是链接,点我呀:) [题意] 给你n个数对(ai,bi). 让你求一个大于1的数字x 使得对于任意的i x|a[i] 或者 x|b[i] [题解] 求出第一个数对的两个数他们有哪些质因子. ...

  7. CodeForces - 1025B Weakened Common Divisor

    http://codeforces.com/problemset/problem/1025/B 大意:n对数对(ai,bi),求任意一个数满足是所有数对中至少一个数的因子(大于1) 分析: 首先求所有 ...

  8. Codeforces #505(div1+div2) B Weakened Common Divisor

    题意:给你若干个数对,每个数对中可以选择一个个元素,问是否存在一种选择,使得这些数的GCD大于1? 思路:可以把每个数对的元素乘起来,然后求gcd,这样可以直接把所有元素中可能的GCD求出来,从小到大 ...

  9. codeforces 1025B Weakened Common Divisor(质因数分解)

    题意: 给你n对数,求一个数,可以让他整除每一对数的其中一个 思路: 枚举第一对数的质因数,然后暴力 代码: #include<iostream> #include<cstdio&g ...

随机推荐

  1. 藏书馆App基于Rainbond实现云原生DevOps的实践

    我们需要的不是精通Kubernetes的工程师,我们需要一款小白都能用好的管理工具. -- 厦门正观易知科技有限公司运维负责人 郭传壕 大家好,我是厦门正观易知科技有限公司运维负责人郭传壕. 藏书馆是 ...

  2. [源码解析] PyTorch 分布式 Autograd (3) ---- 上下文相关

    [源码解析] PyTorch 分布式 Autograd (3) ---- 上下文相关 0x00 摘要 我们已经知道 dist.autograd 如何发送和接受消息,本文再来看看如何其他支撑部分,就是如 ...

  3. 【AGC板刷记录】

    这个帖子,是在自己学知识点累了的时候就看看\(AGC\)的题目来休息. 而且白天上课可以做( AGC-001 \(A\ BBQ Easy\) 考虑从小到大排,相邻两个取为一对. BBQ Easy #i ...

  4. Atcoder Grand Contest 006 D - Median Pyramid Hard(二分+思维)

    Atcoder 题面传送门 & 洛谷题面传送门 u1s1 Atcoder 不少思维题是真的想不出来,尽管在 Atcoder 上难度并不高 二分答案(这我倒是想到了),检验最上面一层的数是否 \ ...

  5. VS调用别人的COM组件的问题

    调用第三方的COM组件,记得要先在管理员cmd执行:regsvr32 xxxx.dll 没执行之前运行 HRESULT hr = pComm.CreateInstance("xxxx.Com ...

  6. MYSQL5.8----M3

    333333333333333333333333333 mysql> DESC user; +----------+---------------------+------+-----+---- ...

  7. perl练习——计算点突变

    题目来源:http://rosalind.info/problems/hamm/ 一.程序目的:计算序列点突变(Point Mutations) 输入: GAGCCTACTAACGGGAT CATCG ...

  8. ubuntu常见错误--Could not get lock /var/lib/dpkg/lock

    ubuntu常见错误--Could not get lock /var/lib/dpkg/lock   通过终端安装程序sudo apt-get install xxx时出错:   E: Could ...

  9. Python与Perl的相似与差别

    Python version 3.7版本 00.命令行交互 命令行交互 Perl Python perl -e <Perl代码>     #Unix/Linux/Windows/DOS 直 ...

  10. 学习java 7.15

    学习内容: 进程:正在运行的程序 是系统进行资源分配和调用的独立单位 每个进程都有它自己的内存空间和系统资源 线程:是进程中的单个顺序控制流,是一条执行路径 单线程:一个进程如果只有一条执行路径,则称 ...