CF1025B Weakened Common Divisor 题解
Content
定义 \(n\) 个数对 \((a_1,b_1),(a_2,b_2),(a_3,b_3),...,(a_n,b_n)\) 的 \(\text{WCD}\) 为能够整除每个数对中至少一个数的 \(>1\) 的整数。现在,给出 \(n\) 个数对,请找出它们的 \(\text{WCD}\),或者这 \(n\) 个数对没有符合要求的 \(\text{WCD}\)。
数据范围:\(1\leqslant n\leqslant 1.5\times 10^5,2\leqslant a_i,b_i\leqslant 2\times 10^9\)。
Solution
我们先把第一个数对的质因子分解出来,然后再在后面找是否有不能够满足条件的质因子,有的话就删除,否则就保留着。最后看是否还有剩下的质因子即可。
Code
int n, pr[150007];
int main() {
n = Rint;
F(i, 1, n) {
int x = Rint, y = Rint;
if(i == 1) {
F(j, 2, sqrt(x)) if(!(x % j)) {pr[++pr[0]] = j; while(!(x % j)) x /= j;}
if(x != 1) pr[++pr[0]] = x;
F(j, 2, sqrt(y)) if(!(y % j)) {pr[++pr[0]] = j; while(!(y % j)) y /= j;}
if(y != 1) pr[++pr[0]] = y;
} else F(j, 1, pr[0]) if(!pr[j]) continue; else if(x % pr[j] && y % pr[j]) pr[j] = 0;
}
F(i, 1, pr[0]) if(pr[i]) return printf("%d", pr[i]), 0;
printf("-1");
return 0;
}
CF1025B Weakened Common Divisor 题解的更多相关文章
- CF1025B Weakened Common Divisor 数学
Weakened Common Divisor time limit per test 1.5 seconds memory limit per test 256 megabytes input st ...
- CF1025B Weakened Common Divisor【数论/GCD/思维】
#include<cstdio> #include<string> #include<cstdlib> #include<cmath> #include ...
- CF1025B Weakened Common Divisor
思路: 首先选取任意一对数(a, b),分别将a,b进行因子分解得到两个因子集合然后取并集(无需计算所有可能的因子,只需得到不同的质因子即可),之后再暴力一一枚举该集合中的元素是否满足条件. 时间复杂 ...
- codeforces#505--B Weakened Common Divisor
B. Weakened Common Divisor time limit per test 1.5 seconds memory limit per test 256 megabytes input ...
- CF #505 B Weakened Common Divisor(数论)题解
题意:给你n组,每组两个数字,要你给出一个数,要求这个是每一组其中一个数的因数(非1),给出任意满足的一个数,不存在则输出-1. 思路1:刚开始乱七八糟暴力了一下果断超时,然后想到了把每组两个数相乘, ...
- 【Codeforces Round #505 (rated, Div. 1 + Div. 2, based on VK Cup 2018 Final) B】Weakened Common Divisor
[链接] 我是链接,点我呀:) [题意] 给你n个数对(ai,bi). 让你求一个大于1的数字x 使得对于任意的i x|a[i] 或者 x|b[i] [题解] 求出第一个数对的两个数他们有哪些质因子. ...
- CodeForces - 1025B Weakened Common Divisor
http://codeforces.com/problemset/problem/1025/B 大意:n对数对(ai,bi),求任意一个数满足是所有数对中至少一个数的因子(大于1) 分析: 首先求所有 ...
- Codeforces #505(div1+div2) B Weakened Common Divisor
题意:给你若干个数对,每个数对中可以选择一个个元素,问是否存在一种选择,使得这些数的GCD大于1? 思路:可以把每个数对的元素乘起来,然后求gcd,这样可以直接把所有元素中可能的GCD求出来,从小到大 ...
- codeforces 1025B Weakened Common Divisor(质因数分解)
题意: 给你n对数,求一个数,可以让他整除每一对数的其中一个 思路: 枚举第一对数的质因数,然后暴力 代码: #include<iostream> #include<cstdio&g ...
随机推荐
- 藏书馆App基于Rainbond实现云原生DevOps的实践
我们需要的不是精通Kubernetes的工程师,我们需要一款小白都能用好的管理工具. -- 厦门正观易知科技有限公司运维负责人 郭传壕 大家好,我是厦门正观易知科技有限公司运维负责人郭传壕. 藏书馆是 ...
- [源码解析] PyTorch 分布式 Autograd (3) ---- 上下文相关
[源码解析] PyTorch 分布式 Autograd (3) ---- 上下文相关 0x00 摘要 我们已经知道 dist.autograd 如何发送和接受消息,本文再来看看如何其他支撑部分,就是如 ...
- 【AGC板刷记录】
这个帖子,是在自己学知识点累了的时候就看看\(AGC\)的题目来休息. 而且白天上课可以做( AGC-001 \(A\ BBQ Easy\) 考虑从小到大排,相邻两个取为一对. BBQ Easy #i ...
- Atcoder Grand Contest 006 D - Median Pyramid Hard(二分+思维)
Atcoder 题面传送门 & 洛谷题面传送门 u1s1 Atcoder 不少思维题是真的想不出来,尽管在 Atcoder 上难度并不高 二分答案(这我倒是想到了),检验最上面一层的数是否 \ ...
- VS调用别人的COM组件的问题
调用第三方的COM组件,记得要先在管理员cmd执行:regsvr32 xxxx.dll 没执行之前运行 HRESULT hr = pComm.CreateInstance("xxxx.Com ...
- MYSQL5.8----M3
333333333333333333333333333 mysql> DESC user; +----------+---------------------+------+-----+---- ...
- perl练习——计算点突变
题目来源:http://rosalind.info/problems/hamm/ 一.程序目的:计算序列点突变(Point Mutations) 输入: GAGCCTACTAACGGGAT CATCG ...
- ubuntu常见错误--Could not get lock /var/lib/dpkg/lock
ubuntu常见错误--Could not get lock /var/lib/dpkg/lock 通过终端安装程序sudo apt-get install xxx时出错: E: Could ...
- Python与Perl的相似与差别
Python version 3.7版本 00.命令行交互 命令行交互 Perl Python perl -e <Perl代码> #Unix/Linux/Windows/DOS 直 ...
- 学习java 7.15
学习内容: 进程:正在运行的程序 是系统进行资源分配和调用的独立单位 每个进程都有它自己的内存空间和系统资源 线程:是进程中的单个顺序控制流,是一条执行路径 单线程:一个进程如果只有一条执行路径,则称 ...