题面传送门

考虑容斥。我们记 \(a_i\) 为钦定 \(i\) 个人被 B 神碾压的方案数,如果我们已经求出了 \(a_i\) 那么一遍二项式反演即可求出答案,即 \(ans=\sum\limits_{i=k}^{n-1}a_i(-1)^{i-k}\dbinom{i}{k}\),于是现在问题转化为怎样求 \(a_i\)。首先我们肯定要从另外 \(n-1\) 个学生中选出这 \(i\) 个,方案数 \(\dbinom{n-1}{i}\),其次,根据“碾压”的定义,这 \(i\) 个学生在任何一门学科中的分数都 \(\le\) B 神的分数,也就是说对于任何一门学科 \(j\),都有这 \(i\) 个学生属于被 B 神吊打的 \(n-r_j\) 个学生中,故对于每一门学科,被被 B 神吊打的 \(n-r_j\) 个学生中有 \(i\) 个学生是确定的,我们只需另从 \(n-i-1\) 个学生中选出 \(n-r_j-i\) 即可,方案数为 \(\dbinom{n-i-1}{n-i-r_j}\),再其次,对每门学科我们要确定有多少种可能的分数,我们枚举 B 神的分数 \(l\),那么对于被 B 神吊打的 \(n-r_j\) 个学生,每个人都有 \(l\) 种可能的分数,方案数 \(l^{n-r_j}\),对于吊打 B 神的 \(r_j-1\) 个学生,每个人都有 \(u_j-l\) 种可能的分数,方案数 \((u_j-l)^{r_j-1}\),因此我们有:

\[a_i=\dbinom{n-1}{i}\prod\limits_{j=1}^m\dbinom{n-i-1}{n-i-r_j}\sum\limits_{l=1}^{u_j}l^{n-r_j}(u_j-l)^{r_j-1}
\]

由于这题 \(u_i\) 很大,直接算显然无法通过,不过注意到后面那坨东西 \(\sum\limits_{l=1}^{u_j}l^{n-r_j}(u_j-l)^{r_j-1}\) 是与 \(i\) 严格无关的,因此考虑将这东西预处理出来。怎么预处理呢,考虑将这东西用二项式定理展开变个形,具体来说:

\[\begin{aligned}
&\sum\limits_{l=1}^{u_j}l^{n-r_j}(u_j-l)^{r_j-1}\\
=&\sum\limits_{l=1}^{u_j}l^{n-r_j}\sum\limits_{t=0}^{r_j-1}u_j^t(-l)^{r_j-1-t}\dbinom{r_i-1}{t}\\
=&\sum\limits_{t=0}^{r_j-1}u_j^t\dbinom{r_i-1}{t}\sum\limits_{l=1}^{u_j}l^{n-r_j}(-l)^{r_j-1-t}\\
=&\sum\limits_{t=0}^{r_j-1}u_j^t\dbinom{r_i-1}{t}(-1)^{r_i-1-t}\sum\limits_{l=1}^{u_j}l^{n-1-t}
\end{aligned}
\]

芜湖~好了,前面枚举复杂度显然不会爆,后面那东西是自然数 \(k\) 次幂之和的形式,可以拉格朗日插值求出,于是复杂度就降到了 \(n^2m\),可以通过此题。

const int MAXN=100;
const int MOD=1e9+7;
int qpow(int x,int e){
int ret=1;
for(;e;e>>=1,x=1ll*x*x%MOD) if(e&1) ret=1ll*ret*x%MOD;
return ret;
}
int n,m,k,u[MAXN+5],r[MAXN+5],s[MAXN+5],f[MAXN+5],fac[MAXN+5],ifac[MAXN+5];
void init_fac(int mx){
for(int i=(fac[0]=ifac[0]=ifac[1]=1)+1;i<=mx;i++) ifac[i]=1ll*ifac[MOD%i]*(MOD-MOD/i)%MOD;
for(int i=1;i<=mx;i++) fac[i]=1ll*fac[i-1]*i%MOD,ifac[i]=1ll*ifac[i-1]*ifac[i]%MOD;
}
int binom(int n,int k){
if(n<0||k<0||n<k) return 0;
return 1ll*fac[n]*ifac[k]%MOD*ifac[n-k]%MOD;
}
int sum[MAXN+5],pre[MAXN+5],suf[MAXN+5];
int calc(int n,int k){
for(int i=1;i<=k+1;i++) sum[i]=(sum[i-1]+qpow(i,k))%MOD;
pre[0]=n;for(int i=1;i<=k+1;i++) pre[i]=1ll*pre[i-1]*(n-i+MOD)%MOD;
suf[k+2]=1;for(int i=k+1;~i;i--) suf[i]=1ll*suf[i+1]*(n-i+MOD)%MOD;
int ans=0;
for(int i=1;i<=k+1;i++){
int mul=1ll*sum[i]*pre[i-1]%MOD*suf[i+1]%MOD*ifac[i]%MOD*ifac[k+1-i]%MOD;
if((k+1-i)&1) ans=(ans-mul+MOD)%MOD;else ans=(ans+mul)%MOD;
} return ans;
}
int main(){
scanf("%d%d%d",&n,&m,&k);init_fac(n+1);
for(int i=1;i<=m;i++) scanf("%d",&u[i]);
for(int i=1;i<=m;i++) scanf("%d",&r[i]);
for(int i=1;i<=m;i++) for(int l=0;l<r[i];l++){
int mul=1ll*binom(r[i]-1,l)*qpow(u[i],l)%MOD*calc(u[i],n-1-l)%MOD;
if((r[i]-1-l)&1) s[i]=(s[i]-mul+MOD)%MOD;else s[i]=(s[i]+mul)%MOD;
} int ans=0;
for(int i=k;i<n;i++){
int mul=binom(n-1,i);
for(int j=1;j<=m;j++) mul=1ll*mul*binom(n-i-1,n-r[j]-i)%MOD*s[j]%MOD;
if((i-k)&1) ans=(ans-1ll*mul*binom(i,k)%MOD+MOD)%MOD;
else ans=(ans+1ll*mul*binom(i,k)%MOD)%MOD;
} printf("%d\n",ans);
return 0;
}

洛谷 P3270 - [JLOI2016]成绩比较(容斥原理+组合数学+拉格朗日插值)的更多相关文章

  1. 洛谷 P5469 - [NOI2019] 机器人(区间 dp+拉格朗日插值)

    洛谷题面传送门 神仙题,放在 D1T2 可能略难了一点( 首先显然对于 P 型机器人而言,将它放在 \(i\) 之后它会走到左边第一个严格 \(>a_i\) 的位置,对于 Q 型机器人而言,将它 ...

  2. 【bzoj4559】[JLoi2016]成绩比较(dp+拉格朗日插值)

    bzoj 题意: 有\(n\)位同学,\(m\)门课. 一位同学在第\(i\)门课上面获得的分数上限为\(u_i\). 定义同学\(A\)碾压同学\(B\)为每一课\(A\)同学的成绩都不低于\(B\ ...

  3. P3270 [JLOI2016]成绩比较 容斥 数论 组合数学 拉格朗日插值

    LINK:成绩比较 大体思路不再赘述 这里只说几个我犯错的地方. 拉格朗日插值的时候 明明是n次多项式 我只带了n个值进去 导致一直GG. 拉格朗日插值的时候 由于是从1开始的 所以分母是\((i-1 ...

  4. 洛谷 P5400 - [CTS2019]随机立方体(组合数学+二项式反演)

    洛谷题面传送门 二项式反演好题. 首先看到"恰好 \(k\) 个极大值点",我们可以套路地想到二项式反演,具体来说我们记 \(f_i\) 为钦定 \(i\) 个点为极大值点的方案数 ...

  5. 洛谷 P1763 状态压缩dp+容斥原理

    (题目来自洛谷oj) 一天,maze决定对自己的一块n*m的土地进行修建.他希望这块土地共n*m个格子的高度分别是1,2,3,...,n*m-1,n*m.maze又希望能将这一些格子中的某一些拿来建蓄 ...

  6. 洛谷 P3267 - [JLOI2016/SHOI2016]侦察守卫(树形 dp)

    洛谷题面传送门 经典题一道,下次就称这种"覆盖距离不超过 xxx 的树形 dp"为<侦察守卫模型> 我们考虑树形 \(dp\),设 \(f_{x,j}\) 表示钦定了 ...

  7. 洛谷 P6276 - [USACO20OPEN]Exercise P(组合数学+DP)

    洛谷题面传送门 废了,又不会做/ll orz czx 写的什么神仙题解,根本看不懂(%%%%%%%%% 首先显然一个排列的贡献为其所有置换环的乘积.考虑如何算之. 碰到很多数的 LCM 之积只有两种可 ...

  8. 洛谷 P4708 - 画画(Burnside 引理+组合数学)

    洛谷题面传送门 神仙题 %%%%%%%%%%%%%%%%%%%% 题解搬运人来了 首先看到本质不同(无标号)的图计数咱们可以想到 Burnside 引理,具体来说,我们枚举一个排列 \(p\),并统计 ...

  9. bzoj4559[JLoi2016]成绩比较 容斥+拉格朗日插值法

    4559: [JLoi2016]成绩比较 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 261  Solved: 165[Submit][Status ...

随机推荐

  1. [对对子队]测试报告Beta

    一.测试中发现的bug BETA阶段的新bug 描述 提出者(可能需要发现者在会议上复现) 处理人 是否解决 第四关中工作区的循环语句拖动到组件区后成本的大小比原来不一样的问题 梁河览 何瑞 是 循环 ...

  2. [对对子队]Beta阶段项目展示博客

    Beta阶段项目展示博客 1 团队成员的简介和个人博客地址 成员 头像 岗位 博客 个人介绍 黄贤昊 PM 17373253 喜欢玩游戏和做游戏,项目经验基本都和游戏相关,擅长摸鱼,偶尔敬业. 吴桐雨 ...

  3. 2020BUAA软工个人博客作业-软件案例分析

    2020BUAA软工个人博客作业-软件案例分析 17373010 杜博玮 项目 内容 这个作业属于哪个课程 2020春季计算机学院软件工程(罗杰 任健) 这个作业的要求在哪里 个人博客作业-软件案例分 ...

  4. [火星补锅] 非确定性有穷状态决策自动机练习题Vol.1 T3 第K大区间 题解

    前言: 老火星人了 解析: 很妙的二分题.如果没想到二分答案.. 很容易想到尝试用双指针扫一下,看看能不能统计答案. 首先,tail指针右移时很好处理,因为tail指针右移对区间最大值的影响之可能作用 ...

  5. 计算机网络传输层之TCP拥塞控制(慢开始与拥塞避免、快重传和快恢复)

    文章转自:https://blog.csdn.net/weixin_43914604/article/details/105532044 学习课程:<2019王道考研计算机网络> 学习目的 ...

  6. Windows内核基础知识-5-调用门(32-Bit Call Gate)

    Windows内核基础知识-5-调用门(32-Bit Call Gate) 调用门有一个关键的作用,就是用来提权.调用门其实就是一个段. 调用门: 这是段描述符的结构体,里面的s字段用来标记是代码段还 ...

  7. /etc/hosts 详解

    /etc/hosts:主机名查询静态表,是ip地址与域名快速解析的文件.ip地址与主机名之间的映射,包括主机的别名. 通常将常用的域名和ip地址映射加入到hosts文件中,实现快速方便的访问. 如果没 ...

  8. NAT & 防火墙

    NAT 网络地址转换 NAT产生背景 今天,无数快乐的互联网用户在尽情享受Internet带来的乐趣.他们浏览新闻,搜索资料,下载软件,广交新朋,分享信息,甚至于足不出户获取一切日用所需.企业利用互联 ...

  9. robot_framewok自动化测试--(9)连接并操作 MySql 数据库

    连接并操作 MySql 数据库 1.mysql数据库 1.1安装mysql数据库 请参考我的另一篇文章:MYSQL5.7下载安装图文教程 1.2.准备测试数据 请参考我的另一篇文章:Mysql基础教程 ...

  10. idea断点调试

    基本使用 1 show execution point (Alt+F10):跳转到断点所执行的地方,也就是说你在看代码的时候,点到其他地方,一点这个按钮,就到了程序执行到当前哪行的代码的地方. 2 s ...