Codeforces 题目传送门 & 洛谷题目传送门

首先考虑将题目中的条件转化为图论的语言。看到“行”“列”,我们很自然地想到二分图中行、列转点,点转边的套路,对于每一行 \(x\) 新建一个点 \(R(x)\),对于每一列 \(x\) 也新建一个点 \(C(y)\)。考虑对于点 \((x_i,y_i)\),若其被染上红色,就连边 \(R(x_i)\to C(y_i)\),否则连边 \(C(y_i)\to R(x_i)\)。那么显然对于每一行而言,其红色格子的个数就是该行所对应的点的出度,其蓝色格子的个数就是该行所对应的点的入度;对于每一列而言,其红色格子的个数就是该行所对应的点的入度,其蓝色格子的个数就是该行所对应的点的出度。

因此我们可将题目转化为:给定一张二分图,要求给每条边定向,使每个点入度与出度之差的绝对值不超过 \(1\)。

我们不妨先考虑原题的一个弱化版本。假设原图中所有点度数都是偶数,那么我们要求一个无向图,使得每个点的入度等于出度。这显然可以用欧拉回路解决,由于每个点度数都是偶数,因此图的每个连通块的导出子图都存在欧拉回路,那么我们对于每个连通块跑一遍欧拉回路,假设为 \(v_1\to v_2\to v_3\to\dots\to v_k\to v_1\),那么我们只需对于 \(\forall i\in [1,k]\) 将 \(v_i\) 与 \(v_{i+1}\) 之间的边定向为 \(v_i\to v_{i+1}\) 即可,因为 \(\forall i\in [1,k]\),显然 \(v_{i-1}\to v_i\) 的边会为 \(v_i\) 的入度产生 \(1\) 的贡献,\(v_{i}\to v_{i+1}\) 的边会为 \(v_i\) 的出度产生 \(1\) 的贡献,因此 \(v_i\) 的入度永远等于出度,符合题目要求。

最后考虑原题,本题一个巧妙之处就在于奇点怎么处理。显然对于一个奇点而言,我们要求它的出度与入度之差为 \(\pm 1\),而我们希望它的出度与入度之差为 \(0\),这样就能归约到弱化版了。因此我们考虑建立一个虚点,将所有奇点与该虚点之间连边,显然对于原图一个合法的定向方式,我们总能控制这些奇点与虚点连边的方向使得每个奇点的入度都等于出度。又根据有向图 \(\sum indeg_i=\sum outdeg_i\) 可知该虚点的入度也等于出度,故我们在新图上跑欧拉回路即可。

时间复杂度线性。

#include <bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define fill0(a) memset(a,0,sizeof(a))
#define fill1(a) memset(a,-1,sizeof(a))
#define fillbig(a) memset(a,63,sizeof(a))
#define pb push_back
#define ppb pop_back
#define mp make_pair
template<typename T1,typename T2> void chkmin(T1 &x,T2 y){if(x>y) x=y;}
template<typename T1,typename T2> void chkmax(T1 &x,T2 y){if(x<y) x=y;}
typedef pair<int,int> pii;
typedef long long ll;
typedef unsigned int u32;
typedef unsigned long long u64;
namespace fastio{
#define FILE_SIZE 1<<23
char rbuf[FILE_SIZE],*p1=rbuf,*p2=rbuf,wbuf[FILE_SIZE],*p3=wbuf;
inline char getc(){return p1==p2&&(p2=(p1=rbuf)+fread(rbuf,1,FILE_SIZE,stdin),p1==p2)?-1:*p1++;}
inline void putc(char x){(*p3++=x);}
template<typename T> void read(T &x){
x=0;char c=getchar();T neg=0;
while(!isdigit(c)) neg|=!(c^'-'),c=getchar();
while(isdigit(c)) x=(x<<3)+(x<<1)+(c^48),c=getchar();
if(neg) x=(~x)+1;
}
template<typename T> void recursive_print(T x){if(!x) return;recursive_print(x/10);putc(x%10^48);}
template<typename T> void print(T x){if(!x) putc('0');if(x<0) putc('-'),x=~x+1;recursive_print(x);}
void print_final(){fwrite(wbuf,1,p3-wbuf,stdout);}
}
const int DELTA=2e5+2;
int n,deg[DELTA*2+5],hd[DELTA*2+5],to[DELTA*6+5],nxt[DELTA*6+5],ec=1;
void adde(int u,int v){to[++ec]=v;nxt[ec]=hd[u];hd[u]=ec;}
int vis[DELTA*3+5];
void dfs(int x){
for(int &e=hd[x];e;e=nxt[e])
if(!vis[e>>1]) vis[e>>1]=1+(x<=DELTA),dfs(to[e]);
}
int main(){
scanf("%d",&n);
for(int i=1,x,y;i<=n;i++){
scanf("%d%d",&x,&y);++deg[x];++deg[y+DELTA];
adde(x,y+DELTA);adde(y+DELTA,x);
}
for(int i=1;i<=DELTA*2;i++)
if(deg[i]&1) adde(0,i),adde(i,0);
for(int i=1;i<=DELTA;i++) dfs(i);
for(int i=1;i<=n;i++) putchar((vis[i]==1)?'r':'b');
return 0;
}

Codeforces 547D - Mike and Fish(欧拉回路)的更多相关文章

  1. CodeForces - 547D: Mike and Fish (转化为欧拉回路)(优化dfs稠密图)(定向问题)

    As everyone knows, bears love fish. But Mike is a strange bear; He hates fish! The even more strange ...

  2. Codeforces.547D.Mike and Fish(思路 欧拉回路)

    题目链接 \(Description\) 给定平面上n个点,将这些点染成红or蓝色,要求每行.每列红色点与蓝色点数量的差的绝对值<=1.输出方案(保证有解). \(Solution\) 参考这 ...

  3. Codeforces 547D Mike and Fish

    Description 题面 题目大意:有一个的网格图,给出其中的 \(n\) 个点,要你给这些点染蓝色或红色,满足对于每一行每一列都有红蓝数量的绝对值之差不超过1 Solution 首先建立二分图, ...

  4. CodeForces 547D Mike and Fish 思维

    题意: 二维平面上给出\(n\)个点,然后对每个点进行染色:红色和蓝色,要求位于同一行或同一列的点中,红色点和蓝色点的个数相差不超过1 分析: 正解是求欧拉路径,在这篇博客中看到一个巧妙的思路: 对于 ...

  5. Codeforces 247D Mike and Fish

    Mike and Fish 我们可以把这个模型转换一下就变成有两类点,一类是X轴, 一类是Y轴, 每个点相当于对应的点之间建一条边, 如果这条边变红两点同时+1, 变蓝两点同时-1. 我们能发现这个图 ...

  6. cf547D. Mike and Fish(欧拉回路)

    题意 题目链接 Sol 说实话这题我到现在都不知道咋A的. 考试的时候是对任意相邻点之间连边,然后一分没有 然后改成每两个之间连一条边就A了.. 按说是可以过掉任意坐标上的点都是偶数的数据啊.. #i ...

  7. 547D Mike and Fish

    传送门 分析 见正睿10.3笔记 代码 #include<iostream> #include<cstdio> #include<cstring> #include ...

  8. CF 547 D. Mike and Fish

    D. Mike and Fish http://codeforces.com/contest/547/problem/D 题意: 给定平面上n个点,将这些点染成红或者蓝色,要求每行.每列红色点与蓝色点 ...

  9. 「CF547D」 Mike and Fish

    「CF547D」 Mike and Fish 传送门 介绍三种做法. \(\texttt{Solution 1}\) 上下界网络流 我们将每一行.每一列看成一个点. 两种颜色的数量最多相差 \(1\) ...

随机推荐

  1. 爬虫逆向基础,理解 JavaScript 模块化编程 webpack

    关注微信公众号:K哥爬虫,QQ交流群:808574309,持续分享爬虫进阶.JS/安卓逆向等技术干货! 简介 在分析一些站点的 JavaScript 代码时,比较简单的代码,函数通常都是一个一个的,例 ...

  2. Stream中的Collector收集器原理

    前言 Stream的基本操作因为平时工作中用得非常多(也能看到一些同事把Stream操作写得很丑陋),所以基本用法就不写文章记录了. 之所以能把Stream的操作写得很丑陋,完全是因为Stream底层 ...

  3. 整数划分为k份

    题目 将整数n分成k份,且每份不能为空,任意两个方案不能相同(不考虑顺序). 例如:n=7,k=3,下面三种分法被认为是相同的. 1,1,5; 1,5,1; 5,1,1; 问有多少种不同的分法. 输入 ...

  4. 使用Servlet前Tomcat介绍

    虚拟目录的映射方式:让tomcat服务器自动映射tomcat服务器会自动管理webapps目录下的所有web应用,并把它映射成虚似目录.换句话说,tomcat服务器webapps目录中的web应用,外 ...

  5. 2021.10.10考试总结[NOIP模拟73]

    T1 小L的疑惑 对于\(P_i\),如果所有比\(P_i\)小的数加起来也达不到\(P_i-1\),那么值域肯定不连续.否则设原来值域最大值为\(mx\),则\(P_i\)会让值域最大值增致\(mx ...

  6. noip模拟11

    T1 math 就挺水一小破题目,第一眼看好像不可做,看着看着突然发现假设x和y的最大公约数是gcd,那么kx%y一定是gcd的倍数, 然后想到可以把所有数字与k的gcd求出来,打一个完全背包,可是仔 ...

  7. Pandas核心用法

    目录 Numpy和Pandas Numpy科学计算 Pandas数据分析 安装jupyter notebook Numpy语法 创建和基本使用 切片索引 布尔索引 对位运算 矩阵的乘除 其他方法 Pa ...

  8. 单片机入门stm32知识学习的先后顺序

    这里大概的罗列了一些学习STM32的内容,以及学习顺序.如果是新手的话,建议边看中文手册和学习视频;如果是已经入门的,个人建议自己做一个项目,不论项目大小,当然里面会涉及到自己已经学习过的,或者是自己 ...

  9. 数组中的逆序对 牛客网 剑指Offer

    数组中的逆序对 牛客网 剑指Offer 题目描述 在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对.输入一个数组,求出这个数组中的逆序对的总数P.并将P对10000000 ...

  10. Luogu P2024 [NOI2001]食物链 | 并查集

    题目链接 思路:并查集,因为一开始我们并不知道每一只动物是哪一个种类的,所以我们干脆建立三倍于n的空间,1~n这三分之一用来存第i只动物是A的情况,n+1~2n这三分之一用来存第(i-n)只动物是B的 ...