Codeforces 547D - Mike and Fish(欧拉回路)
首先考虑将题目中的条件转化为图论的语言。看到“行”“列”,我们很自然地想到二分图中行、列转点,点转边的套路,对于每一行 \(x\) 新建一个点 \(R(x)\),对于每一列 \(x\) 也新建一个点 \(C(y)\)。考虑对于点 \((x_i,y_i)\),若其被染上红色,就连边 \(R(x_i)\to C(y_i)\),否则连边 \(C(y_i)\to R(x_i)\)。那么显然对于每一行而言,其红色格子的个数就是该行所对应的点的出度,其蓝色格子的个数就是该行所对应的点的入度;对于每一列而言,其红色格子的个数就是该行所对应的点的入度,其蓝色格子的个数就是该行所对应的点的出度。
因此我们可将题目转化为:给定一张二分图,要求给每条边定向,使每个点入度与出度之差的绝对值不超过 \(1\)。
我们不妨先考虑原题的一个弱化版本。假设原图中所有点度数都是偶数,那么我们要求一个无向图,使得每个点的入度等于出度。这显然可以用欧拉回路解决,由于每个点度数都是偶数,因此图的每个连通块的导出子图都存在欧拉回路,那么我们对于每个连通块跑一遍欧拉回路,假设为 \(v_1\to v_2\to v_3\to\dots\to v_k\to v_1\),那么我们只需对于 \(\forall i\in [1,k]\) 将 \(v_i\) 与 \(v_{i+1}\) 之间的边定向为 \(v_i\to v_{i+1}\) 即可,因为 \(\forall i\in [1,k]\),显然 \(v_{i-1}\to v_i\) 的边会为 \(v_i\) 的入度产生 \(1\) 的贡献,\(v_{i}\to v_{i+1}\) 的边会为 \(v_i\) 的出度产生 \(1\) 的贡献,因此 \(v_i\) 的入度永远等于出度,符合题目要求。
最后考虑原题,本题一个巧妙之处就在于奇点怎么处理。显然对于一个奇点而言,我们要求它的出度与入度之差为 \(\pm 1\),而我们希望它的出度与入度之差为 \(0\),这样就能归约到弱化版了。因此我们考虑建立一个虚点,将所有奇点与该虚点之间连边,显然对于原图一个合法的定向方式,我们总能控制这些奇点与虚点连边的方向使得每个奇点的入度都等于出度。又根据有向图 \(\sum indeg_i=\sum outdeg_i\) 可知该虚点的入度也等于出度,故我们在新图上跑欧拉回路即可。
时间复杂度线性。
#include <bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define fill0(a) memset(a,0,sizeof(a))
#define fill1(a) memset(a,-1,sizeof(a))
#define fillbig(a) memset(a,63,sizeof(a))
#define pb push_back
#define ppb pop_back
#define mp make_pair
template<typename T1,typename T2> void chkmin(T1 &x,T2 y){if(x>y) x=y;}
template<typename T1,typename T2> void chkmax(T1 &x,T2 y){if(x<y) x=y;}
typedef pair<int,int> pii;
typedef long long ll;
typedef unsigned int u32;
typedef unsigned long long u64;
namespace fastio{
#define FILE_SIZE 1<<23
char rbuf[FILE_SIZE],*p1=rbuf,*p2=rbuf,wbuf[FILE_SIZE],*p3=wbuf;
inline char getc(){return p1==p2&&(p2=(p1=rbuf)+fread(rbuf,1,FILE_SIZE,stdin),p1==p2)?-1:*p1++;}
inline void putc(char x){(*p3++=x);}
template<typename T> void read(T &x){
x=0;char c=getchar();T neg=0;
while(!isdigit(c)) neg|=!(c^'-'),c=getchar();
while(isdigit(c)) x=(x<<3)+(x<<1)+(c^48),c=getchar();
if(neg) x=(~x)+1;
}
template<typename T> void recursive_print(T x){if(!x) return;recursive_print(x/10);putc(x%10^48);}
template<typename T> void print(T x){if(!x) putc('0');if(x<0) putc('-'),x=~x+1;recursive_print(x);}
void print_final(){fwrite(wbuf,1,p3-wbuf,stdout);}
}
const int DELTA=2e5+2;
int n,deg[DELTA*2+5],hd[DELTA*2+5],to[DELTA*6+5],nxt[DELTA*6+5],ec=1;
void adde(int u,int v){to[++ec]=v;nxt[ec]=hd[u];hd[u]=ec;}
int vis[DELTA*3+5];
void dfs(int x){
for(int &e=hd[x];e;e=nxt[e])
if(!vis[e>>1]) vis[e>>1]=1+(x<=DELTA),dfs(to[e]);
}
int main(){
scanf("%d",&n);
for(int i=1,x,y;i<=n;i++){
scanf("%d%d",&x,&y);++deg[x];++deg[y+DELTA];
adde(x,y+DELTA);adde(y+DELTA,x);
}
for(int i=1;i<=DELTA*2;i++)
if(deg[i]&1) adde(0,i),adde(i,0);
for(int i=1;i<=DELTA;i++) dfs(i);
for(int i=1;i<=n;i++) putchar((vis[i]==1)?'r':'b');
return 0;
}
Codeforces 547D - Mike and Fish(欧拉回路)的更多相关文章
- CodeForces - 547D: Mike and Fish (转化为欧拉回路)(优化dfs稠密图)(定向问题)
As everyone knows, bears love fish. But Mike is a strange bear; He hates fish! The even more strange ...
- Codeforces.547D.Mike and Fish(思路 欧拉回路)
题目链接 \(Description\) 给定平面上n个点,将这些点染成红or蓝色,要求每行.每列红色点与蓝色点数量的差的绝对值<=1.输出方案(保证有解). \(Solution\) 参考这 ...
- Codeforces 547D Mike and Fish
Description 题面 题目大意:有一个的网格图,给出其中的 \(n\) 个点,要你给这些点染蓝色或红色,满足对于每一行每一列都有红蓝数量的绝对值之差不超过1 Solution 首先建立二分图, ...
- CodeForces 547D Mike and Fish 思维
题意: 二维平面上给出\(n\)个点,然后对每个点进行染色:红色和蓝色,要求位于同一行或同一列的点中,红色点和蓝色点的个数相差不超过1 分析: 正解是求欧拉路径,在这篇博客中看到一个巧妙的思路: 对于 ...
- Codeforces 247D Mike and Fish
Mike and Fish 我们可以把这个模型转换一下就变成有两类点,一类是X轴, 一类是Y轴, 每个点相当于对应的点之间建一条边, 如果这条边变红两点同时+1, 变蓝两点同时-1. 我们能发现这个图 ...
- cf547D. Mike and Fish(欧拉回路)
题意 题目链接 Sol 说实话这题我到现在都不知道咋A的. 考试的时候是对任意相邻点之间连边,然后一分没有 然后改成每两个之间连一条边就A了.. 按说是可以过掉任意坐标上的点都是偶数的数据啊.. #i ...
- 547D Mike and Fish
传送门 分析 见正睿10.3笔记 代码 #include<iostream> #include<cstdio> #include<cstring> #include ...
- CF 547 D. Mike and Fish
D. Mike and Fish http://codeforces.com/contest/547/problem/D 题意: 给定平面上n个点,将这些点染成红或者蓝色,要求每行.每列红色点与蓝色点 ...
- 「CF547D」 Mike and Fish
「CF547D」 Mike and Fish 传送门 介绍三种做法. \(\texttt{Solution 1}\) 上下界网络流 我们将每一行.每一列看成一个点. 两种颜色的数量最多相差 \(1\) ...
随机推荐
- 在python中实现BASE64编码
什么是Base64编码 BASE64是用于传输8Bit字节的编码方式之一,是一种基于64个可打印字符来表示二进制数据的方法. 如下是转换表:The Base64 Alphabet Base64编码可以 ...
- 【数据结构与算法Python版学习笔记】图——拓扑排序 Topological Sort
概念 很多问题都可转化为图, 利用图算法解决 例如早餐吃薄煎饼的过程 制作松饼的难点在于知道先做哪一步.从图7-18可知,可以首先加热平底锅或者混合原材料.我们借助拓扑排序这种图算法来确定制作松饼的步 ...
- Sobol 序列并行化的实践经验
目录 Sobol 序列并行化的实践经验 随机数发生器并行化的常见策略 Sobol 序列的原理和跳转功能 Sobol 序列并行化实践 分块策略 蛙跳策略 蛙跳策略的计算量分析 减少异或计算的技巧 分块策 ...
- 【Python从入门到精通】(二)怎么运行Python呢?有哪些好的开发工具(PyCharm)
您好,我是码农飞哥,感谢您阅读本文,欢迎一键三连哦. 这是Pyhon系列文章的第二篇,本文主要介绍如何运行Python程序以及安装PyCharm开发工具. 干货满满,建议收藏,需要用到时常看看. 小伙 ...
- 【二食堂】Alpha - Scrum Meeting 8
Scrum Meeting 8 例会时间:4.18 11:40 - 12:10 进度情况 组员 昨日进度 今日任务 李健 1. 实体的添加和关系的添加实现的有bug,柴博和刘阳进行了帮助issue 1 ...
- BUAA2020软工作业(四)——结对项目
项目 内容 这个作业属于哪个课程 2020春季计算机学院软件工程(罗杰 任健) 这个作业的要求在哪里 结对项目作业 我在这个课程的目标是 进一步提高自己的编码能力,工程能力,团队协作能力 这个作业在哪 ...
- [源码解析] Pytorch 如何实现后向传播 (2)---- 引擎静态结构
[源码解析] Pytorch 如何实现后向传播 (2)---- 引擎静态结构 目录 [源码解析] Pytorch 如何实现后向传播 (2)---- 引擎静态结构 0x00 摘要 0x01 Engine ...
- hdu 1083 Courses(二分图最大匹配)
题意: P门课,N个学生. (1<=P<=100 1<=N<=300) 每门课有若干个学生可以成为这门课的代表(即候选人). 又规定每个学生最多只能成为一门课的代 ...
- 跟着老猫来搞GO,集跬步而致千里
上次博客中,老猫已经和大家同步了如何搭建相关的GO语言的开发环境,相信在车上的小伙伴应该都已经搞定了环境了.那么本篇开始,我们就来熟悉GO语言的基础语法.本篇搞定之后,其实期待大家可以和老猫一样,能够 ...
- 七. Go并发编程--sync.Once
一.序 单从库名大概就能猜出其作用.sync.Once使用起来很简单, 下面是一个简单的使用案例 package main import ( "fmt" "sync&qu ...