1第一次作业

1.1题目描述

  对形如4*x+x^2+x的多项式求导。

1.2类图

1.3度量分析

  在完成第一次作业时,我的写法没有特别的“面向对象”。唯一封装起来的是Node,代表多项式的一个项。PolyDerivation是一个方法庞杂的类,先判断输入是否合法,再将多项式拆分成独立的项,接着求导,同时也包含了程序的入口main。这无疑是一个面向方法的写法。

  写valid方法判断合法性的时候,经历过一次波折。一开始的思路是用一个很长的大正则表示出整个多项式,写完发现超过了100个字符,很不美观。而且如果表达式的项数过多,递归层数太深会爆栈。然后我换了一种思路,正则每次只匹配一个项,而项又可以根据x有没有系数和指数分为5类,所以我一共写了5种很短的正则分别匹配5种项。

  但是我有一个地方多此一举了。就是用parsePoly和parseOp两个方法分别取得独立的项和他们之前的符号。其实连接各个项的符号可以归并到每个项里。

1.4BUG分析

  我公测和互测阶段都没有bug。其实提交之前,我改了很多自己的bug。比如优化之后,出现了求导之后如果约掉了所有项就没有输出的情况。

  互测阶段,我hack到别人的bug有爆栈,特殊空白字符,化简之后格式错误这三类问题。

2第二次作业

2.1题目描述

  增加sin(x)和cos(x),每个乘积项可以有多个因子。

  样例:cos(x)*sin(x)*5+x^233+sin(x)^+2

2.2类图

2.3度量分析

  多项式的每一个乘积项其实只有四种因子:常数,x,sin(x),cos(x)。延续作业一的思想,我把乘积项封装在Term类里面,有四个重要属性,分别为常数项和后三种因子的指数。为了保留一个简洁的main入口,我设置了一个只包含main方法的Main类。需要对字符串进行三步处理,即合法判断,拆分乘积项,和求导,这些方法都放在了另一个类DealString里面。Derivation类实现了对x和三角函数的幂求导,他没有属性,只有方法,在需要使用他的功能时创建一个引用,然后直接调用他的方法即可。

  第二次作业我把精力放在了结果化简上面。除了合并同类项,sin(x)^2+cos(x)^2也可以化简。每一次对三角函数化简之后得到的新项,可能会继续满足化简条件。所以我使用for循环,并设置flag记录某次遍历有没有化简出新的项,直到不能再化简为止就停止遍历。

2.4BUG分析

  我通过了所有公测,但是互测被hack了合法性判断问题,我有一处正则表达式漏掉了一个空白字符。

  互测时使用了shell脚本,可以同时输出小组内所有人的求导结果。结合matlab,可以很快判断他们的运算结果是否正确。我是这样使用matlab的:

>>x=2
sin(x)+3*x^2 1*sin(x)^1+3*x^2 ...... 3*x^2+sin(x)

  先设置x的值,后面粘贴同组人输出结果,敲击回车,比较数值是否一致。

3第三次作业

3.1题目描述

  增加多项式因子,sin(...)和cos(...)内部可以嵌套因子。

  样例:sin((2*x))^2*(cos(x)+1)

3.2类图

3.3度量分析

  Factor类代表了因子,它有常数,x的幂,sin的幂,cos的幂,乘类,加类,这6个子类。他们都重写了合法性判断和求导的方法。

  第三次作业与前两次最大的不同是,采用了继承的结构,将合法性判断和求导交给不同的因子类自行解决。

  合法性判断思路:对于常数,x的幂,sin,cos因子,valid方法的传入参数是一个长字符串,应该判断字符串的前缀是否为合法因子。如果包含则返回true,并且捕获前缀中的相关信息,初始化这个因子类的属性(指数等)。对于加类,需要从头至尾地判断传入字符串是否为合法的AddClass类,而不仅仅是前缀。具体方法是判断前缀是否为一个合法的因子,其后如果是*(乘号),把该因子加入到动态创建的MulClass实例的属性里,如果是+-号,把这个mulClass加入到这个加类的ArrayList<MulClass>里。一边判断合法性,一边存储合法因子。

  求导思路:根据乘积和嵌套的求导法则,分别调用所包含的因子实例的求导参数。结果返回一个字符串。

  下表为不同因子之间的包含关系:

类名 属性
AddClass ArrayList<MulClass>
MulClass

BigInteger coeff

BigInteger xexp

ArrayList<Sin>

ArrayList<Cos>

ArrayList<AddClass>

Sin

BigInteger exp

AddClass inside

Cos

BigInteger exp

AddClass inside

Xexp

BigInteger exp

Constant

BigInteger val

  其中加类AddClass比较特殊,输入的多项式就是一个加类,带括号的多项式因子也是一个加类。

3.4BUG分析

  强测多个点超时,受到了毁灭性打击。以上的类图是在bug修复环节我重构一遍的架构,不会超时。重构之前的加类里面,我用for循环扫描字符串从start到end的子串是不是合法因子,如果不是就end++,再判断一次;如果是就start=end+1,判断后续因子。这个办法for循环层数很深,处理((((((((x))))))))这种多层括号的数据点时很容易超时。

  互测hack别人的数据点大多数是导数计算错误,少数优化的很好的同学存在过度化简问题(比如输出sin(2*x))。

4问题反思

4.1方法过长

  checkstyle要求方法长度不超过60行,我超长的方法内基本都有一个很长的while循环。我的解决方式是将while内部,功能相对独立的语句合并成一个新的方法。即将大方法的步骤分化成小方法,并在大方法里调用小方法。

4.2大段重复代码

  sin和cos这两个类极为相像,因此有很多重复的代码。我目前的思路是给他们一个共同的Tri父类,将原来重复的代码放在父类里面实现,子类只体现区别。

JAVA实现表达式求导运算的分析总结的更多相关文章

  1. 面向对象第一单元总结:Java实现表达式求导

    面向对象第一单元总结:Java实现表达式求导 题目要求 输入一个表达式:包含x,x**2,sin(),cos(),等形式,对x求导并输出结果 例:\(x+x**2+-2*x**2*(sin(x**2+ ...

  2. 2019 OO第一单元总结(表达式求导)

    一. 基于度量的程序结构分析 1. 第一次作业 这次作业是我上手的第一个java程序,使用了4个类来实现功能.多项式采用两个arraylist来存,系数和幂指数一一对应. private ArrayL ...

  3. BUAA_OO第一单元总结性博客作业——表达式求导

    一.程序设计思路 在我的三次作业中都采用了类的分层结构,采用逐项匹配,分层求导的思路. (一). 第一次作业中构建了Polynimial(多项式)类,在类的构造器中就完成了对非法空格的判断并对合法表达 ...

  4. OO_Unit1_表达式求导总结

    OO_Unit1_表达式求导总结   OO的第一单元主要是围绕表达式求导这一问题布置了3个子任务,并在程序的鲁棒性与模型的复杂度上逐渐升级,从而帮助我们更好地提升面向对象的编程能力.事实也证明,通过这 ...

  5. OO Unit 1 表达式求导

    OO Unit 1 表达式求导 面向对象学习小结 前言 本博主要内容目录: 基于度量来分析⾃己的程序结构 缺点反思 重构想法 关于BUG 自己程序出现过的BUG 分析⾃己发现别人程序bug所采⽤的策略 ...

  6. 2019年北航OO第1单元(表达式求导)总结

    2019年北航OO第1单元(表达式求导)总结 1 基于度量的程序结构分析 量化指标及分析 以下是三次作业的量化指标统计: 关于图中指标在这里简要介绍一下: ev(G):基本复杂度,用来衡量程序非结构化 ...

  7. BUAA-OO-第一单元表达式求导作业总结

    figure:first-child { margin-top: -20px; } #write ol, #write ul { position: relative; } img { max-wid ...

  8. Java描述表达式求值的两种解法:双栈结构和二叉树

    Java描述表达式求值的两种解法:双栈结构和二叉树 原题大意:表达式求值 求一个非负整数四则混合运算且含嵌套括号表达式的值.如: # 输入: 1+2*(6/2)-4 # 输出: 3.0 数据保证: 保 ...

  9. 2020 OO 第一单元总结 表达式求导

    title: BUAA-OO 第一单元总结 date: 2020-03-19 20:53:41 tags: OO categories: 学习 OO第一单元通过三次递进式的作业让我们实现表达式求导,在 ...

随机推荐

  1. Python - 面向对象编程 - 三大特性之多态

    前置知识 封装 详解文章:https://www.cnblogs.com/poloyy/p/15203989.html 封装根据职责将属性.方法封装到一个抽象的类中 定义类的准则-封装 继承 详解文章 ...

  2. 7-31 堆栈操作合法性 (20 分) PTA

    7-31 堆栈操作合法性 (20 分)   假设以S和X分别表示入栈和出栈操作.如果根据一个仅由S和X构成的序列,对一个空堆栈进行操作,相应操作均可行(如没有出现删除时栈空)且最后状态也是栈空,则称该 ...

  3. vue-cli-service build 环境设置

    zhidao zhouzongshuo的那个是使用vue-cli3打包项目,通过配置不同的指令给项目设置不一样的配置. npm run serve时会把process.env.NODE_ENV设置为' ...

  4. 法术迸发(Spellburst)

    描述 法术迸发 (EN:Spellburst ) 是一种在<通灵学园>中加入的关键字异能,在玩家打出一张法术牌后触发,只能触发一次. 若随从在法术结算过程中死亡,则不会触发效果 思路 首先 ...

  5. Jmeter系列(18)- 八大组件

    说明 取样器(Sampler):不与其他元件发⽣交互的作⽤的元件 逻辑控制器(Logic Controller):只对其⼦节点的sampler有效,⽽其他元件需要与sampler等元件交互 前置处理器 ...

  6. MySql分区、分表和分库

    MySql分区.分表和分库 数据库的数据量达到一定程度之后,为避免带来系统性能上的瓶颈.需要进行数据的处理,采用的手段是分区.分片.分库.分表. 一些问题的解释: 1.为什么要分表和分区? 日常开发中 ...

  7. JMeter脚本开发

    什么是jmeter脚本 用户操作系统的动作流程 用户操作系统的请求 类似演戏的剧本 怎么快速开发漂亮的jmeter脚本 准确 快速 漂亮,脚本逻辑清晰,维护性高 脚本开发方案 代理 http代理服务器 ...

  8. 『GoLang』语法基础

    标识符 字母或下划线开头 之后只能出现数字.字母.下划线 大小写敏感 Go语言关键字 break default func interface select case defer go map str ...

  9. P4001-[ICPC-Beijing 2006]狼抓兔子【对偶图】

    正题 题目链接:https://www.luogu.com.cn/problem/P4001 题目大意 给出一个类似于 的网格图,求起点到终点的最小割. 解题思路 最小割直接跑网络流,然后发现\(di ...

  10. WPF进阶技巧和实战07--自定义元素02

    在01节中,研究了如何开发自定义控件,下节开始考虑更特殊的选择:派生自定义面板以及构建自定义绘图 创建自定义面板 创建自定义面板是一种比较常见的自定义控件开发子集,面板可以驻留一个或多个子元素,并且实 ...