flink1.7自定义source实现
flink读取source data
数据的来源是flink程序从中读取输入的地方。我们可以使用StreamExecutionEnvironment.addSource(sourceFunction)将源添加到程序中。
flink附带大量预先实现好的各种读取数据源的函数,也可以通过为非并行源去实现SourceFunction接口或者为并行源实现ParallelSourceFunction接口或扩展RichParallelSourceFunction来编写满足自己业务需要的定制源。
flink预先实现好数据源
下面有几个预定义的流源可以从StreamExecutionEnvironment访问
基于文件
readTextFile(path): 读取文本文件,该文件要符合TextInputFormat规范,逐行读取并作为字符串返回。
readFile(fileInputFormat,path): 根据指定的文件输入格式指定读取文件。
readFile(fileInputFormat,path,watchType,interval,pathFilter,typeInfo): 这是前两个方法在内部调用的方法。它根据给定的fileInputFormat读取路径中的文件。根据提供的watchType,该源可能会定期监视(每间隔ms)该路径下来到的新数据(FileProcessingMode.PROCESS_CONTINUOUSLY),或者处理当前路径中的数据后并退出(FileProcessingMode.PROCESS_ONCE)。使用pathFilter,用户可以进一步排除文件的处理。
基于套接字
socketTextStream : 从套接字读取。元素可以用分隔符分隔。
基于集合
fromCollection(Collection) : 从Java Java.util.Collection创建一个数据流。集合中的所有元素必须是相同的类型。
fromCollection(Iterator,Class) :从迭代器创建数据流。该类要指定迭代器返回的元素的数据类型。
fromElements(T ...) :根据给定的对象序列创建数据流。所有对象必须是相同的类型。
fromParallelCollection(SplittableIterator,Class) : 并行地从迭代器创建数据流。该类指定迭代器返回的元素的数据类型。
generateSequence(from,to) : 在给定的区间内并行生成数字序列 。
自定义数据原
package com.intsmaze.flink.streaming.source;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.api.java.tuple.Tuple5;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.source.SourceFunction;
import java.util.Random;
/**
* @Description: 自定义数据源的模板
* @Author: intsmaze
* @Date: 2019/1/4
*/
public class CustomSource {
private static final int BOUND = 100;
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
DataStream<Tuple2<Integer, Integer>> inputStream= env.addSource(new RandomFibonacciSource());
inputStream.map(new InputMap()).print();
env.execute("Intsmaze Custom Source");
}
/**
* @Description:
* @Author: intsmaze
* @Date: 2019/1/5
*/
private static class RandomFibonacciSource implements SourceFunction<Tuple2<Integer, Integer>> {
private static final long serialVersionUID = 1L;
private Random rnd = new Random();
private volatile boolean isRunning = true;
private int counter = 0;
/**
* @Description:
* @Param:
* @return:
* @Author: intsmaze
* @Date: 2019/1/5
*/
@Override
public void run(SourceContext<Tuple2<Integer, Integer>> ctx) throws Exception {
while (isRunning && counter < BOUND) {
int first = rnd.nextInt(BOUND / 2 - 1) + 1;
int second = rnd.nextInt(BOUND / 2 - 1) + 1;
ctx.collect(new Tuple2<>(first, second));
counter++;
Thread.sleep(50L);
}
}
@Override
public void cancel() {
isRunning = false;
}
}
/**
* @Description:
* @Param:
* @return:
* @Author: intsmaze
* @Date: 2019/1/5
*/
public static class InputMap implements MapFunction<Tuple2<Integer, Integer>, Tuple5<Integer, Integer, Integer,
Integer, Integer>> {
private static final long serialVersionUID = 1L;
@Override
public Tuple5<Integer, Integer, Integer, Integer, Integer> map(Tuple2<Integer, Integer> value) throws
Exception {
return new Tuple5<>(value.f0, value.f1, value.f0, value.f1, 0);
}
}
}
flink1.7自定义source实现的更多相关文章
- Flume自定义Source、Sink和Interceptor(简单功能实现)
1.Event event是flume传输的最小对象,从source获取数据后会先封装成event,然后将event发送到channel,sink从channel拿event消费. event由头he ...
- Flink 自定义source和sink,获取kafka的key,输出指定key
--------20190905更新------- 沙雕了,可以用 JSONKeyValueDeserializationSchema,接收ObjectNode的数据,如果有key,会放在Objec ...
- flume自定义Source(taildirSource),自定义Sink(数据库),开发完整步骤
一.flume简单了解推荐网站(简介包括简单案例部署): http://www.aboutyun.com/thread-8917-1-1.html 二.我的需求是实现从ftp目录下采集数据,目录下文件 ...
- 【翻译】Flink Table Api & SQL — 自定义 Source & Sink
本文翻译自官网: User-defined Sources & Sinks https://ci.apache.org/projects/flink/flink-docs-release-1 ...
- 4、flink自定义source、sink
一.Source 代码地址:https://gitee.com/nltxwz_xxd/abc_bigdata 1.1.flink内置数据源 1.基于文件 env.readTextFile(" ...
- flink02------1.自定义source 2. StreamingSink 3 Time 4窗口 5 watermark
1.自定义sink 在flink中,sink负责最终数据的输出.使用DataStream实例中的addSink方法,传入自定义的sink类 定义一个printSink(),使得其打印显示的是真正的ta ...
- Hadoop实战-Flume之自定义Source(十八)
import java.nio.charset.Charset; import java.util.HashMap; import java.util.Random; import org.apach ...
- 《从0到1学习Flink》—— 如何自定义 Data Source ?
前言 在 <从0到1学习Flink>-- Data Source 介绍 文章中,我给大家介绍了 Flink Data Source 以及简短的介绍了一下自定义 Data Source,这篇 ...
- Flink 从 0 到 1 学习 —— 如何自定义 Data Source ?
前言 在 <从0到1学习Flink>-- Data Source 介绍 文章中,我给大家介绍了 Flink Data Source 以及简短的介绍了一下自定义 Data Source,这篇 ...
随机推荐
- 测者的性测试手册:SWAP的监控
swap是什么 swap是磁盘上的一块区域,可以使一个磁盘分区,也可以是一个文件,也可能是一个两种的组合.当物理内存资源紧张的时候,操作系统(Linux)会将一些不常访问的数据放到swap里.为其他常 ...
- spring4笔记----“零配置”:spring提供的几个Annotation标注
@Component :标注一个普通的Spring Bean类 @Controller :标注一个控制器组件器 @Service :标注一个业务逻辑组件器 @Repository ...
- kali2016.2(debian)快速安装mysql5.7.17
糊里糊涂的删除了kali原本的mysql5.6.27版本,原本的mysql与很多软件关联在一起,每次安装都失败,后来把相关的都卸载了(悲催的浪费了一天) 下载地址 debian mysql下载地址 ...
- [20190213]测试服务端打开那些端口.txt
[20190213]测试服务端打开那些端口.txt --//前几天测试使用发送信息到/dev/tcp/ip_address/port,测试端口是否打开.写简单写一个脚本验证看看. $ seq 1 65 ...
- 利用dockerfile制作基于centos7的lnmp镜像(亲测,详细版)
首先呢,这篇文章,也是小弟参考了许多文章,自己整理出来的,有很多不足之处还有待加强,期待各位评论. > LNMP 是代表 Linux 系统下的 Nginx.Mariadb.PHP 相结合而构建成 ...
- 使用FormData进行Ajax请求上传文件
Servlet3.0开始提供了一系列的注解来配置Servlet.Filter.Listener等等.这种方式可以极大的简化在开发中大量的xml的配置.从这个版本开始,web.xml可以不再需要,使用相 ...
- MongoDB启动文件配置参数详解
接手的MongoDB只有一个日志文件,体积非常大,排错不便.在找解决办法的时候发现MongoDB的启动文件配置项超级多,于是产生了解释配置参数的想法. mongod服务有两种启动方式 一种是通过配置文 ...
- Not Found woff 字体库
原因是,默认在IIS上是没有添加对*.woff,*.svg文件的Mime类型,因此在客户端请求此类文件时得到的都是404. 所以我们只需要在我们对应网站下的Mime类型中添加文件对应的类型就行了 .w ...
- malloc和calloc用法
malloc和calloc用法 #include <stdio.h> #include <stdlib.h> int main(){ int n; printf("i ...
- react-native 简介及环境
概要 react native 环境搭建 hello react native react native 发布 react native https://facebook.github.io/reac ...