bzoj4152-[AMPPZ2014]The_Captain
Description
给定平面上的n个点,定义(x1,y1)到(x2,y2)的费用为min(|x1-x2|,|y1-y2|),求从1号点走到n号点的最小费用。
Input
第一行包含一个正整数n(2<=n<=200000),表示点数。
接下来n行,每行包含两个整数x[i],yi,依次表示每个点的坐标。
Output
一个整数,即最小费用。
Sample Input
5
2 2
1 1
4 5
7 1
6 7
Sample Output
2
Solution
定义 \(d_{i,j} = min(x_i - x_j, y_i - y_j)\).
当 \(x_i <= x_j <= x_k\), 发现 \(d_{i,k} >= d_{i,j} + d_{j,k}\). \(y\) 同理.
因此, 将x轴排序, 将x坐标相邻的点相连, y轴同理. 求1到n最短路即可.
Code
#include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<queue>
#include<set>
#include<map>
using namespace std;
#define rep(i,l,r) for(register int i=(l);i<=(r);++i)
#define repdo(i,l,r) for(register int i=(l);i>=(r);--i)
#define il inline
typedef double db;
typedef long long ll;
//---------------------------------------
const int nsz=2e5+50;
const ll ninf=1e17;
int n;
struct tp{int p,x,y;}line[nsz];
bool cmp1(tp a,tp b){return a.x<b.x;}
bool cmp2(tp a,tp b){return a.y<b.y;}
int dis(int a,int b){return min(abs(line[a].x-line[b].x),abs(line[a].y-line[b].y));}
struct te{int t,v,pr;}edge[nsz*4];
int hd[nsz],pe=1;
void adde(int f,int t,int v){edge[++pe]=(te){t,v,hd[f]};hd[f]=pe;}
void adddb(int f,int t,int v){adde(f,t,v);adde(t,f,v);}
ll mind[nsz],vi[nsz];
struct tnd{ll v,d;};
bool operator<(tnd a,tnd b){return a.d>b.d;}
void dij(int f){
priority_queue<tnd> pq;
rep(i,1,n)mind[i]=ninf,vi[i]=0;
mind[f]=0,pq.push((tnd){f,0});
int u,d2;
while(!pq.empty()){
u=pq.top().v;pq.pop();
if(vi[u])continue;
vi[u]=1;
for(int i=hd[u],v;i;i=edge[i].pr){
v=edge[i].t,d2=mind[u]+edge[i].v;
if(mind[v]>d2){
mind[v]=d2;
pq.push((tnd){v,mind[v]});
}
}
}
}
int main(){
ios::sync_with_stdio(0),cin.tie(0);
cin>>n;
rep(i,1,n)cin>>line[i].x>>line[i].y,line[i].p=i;
sort(line+1,line+n+1,cmp1);
rep(i,1,n-1)adddb(line[i].p,line[i+1].p,dis(i,i+1));
sort(line+1,line+n+1,cmp2);
rep(i,1,n-1)adddb(line[i].p,line[i+1].p,dis(i,i+1));
dij(1);
cout<<mind[n]<<'\n';
return 0;
}
bzoj4152-[AMPPZ2014]The_Captain的更多相关文章
- BZOJ4152 AMPPZ2014 The Captain 【最短路】【贪心】*
BZOJ4152 AMPPZ2014 The Captain Description 给定平面上的n个点,定义(x1,y1)到(x2,y2)的费用为min(|x1-x2|,|y1-y2|),求从1号点 ...
- bzoj4152[AMPPZ2014]The Captain 最短路
4152: [AMPPZ2014]The Captain Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 1517 Solved: 603[Submi ...
- BZOJ4152 AMPPZ2014 The Captain(最短路)
事实上每次走到横坐标或纵坐标最接近的点一定可以取得最优方案.于是这样连边跑最短路就可以了. #include<iostream> #include<cstdio> #inclu ...
- bzoj4152 [AMPPZ2014]The Captain
最短路,先将x排序,然后把排序后权值相邻的点连边,再把y排序,也把权值相邻的点连边,求一遍1到n的最短路就好啦. 代码 #include<cstdio> #include<queue ...
- 【ACM】那些年,我们挖(WA)过的最短路
不定时更新博客,该博客仅仅是一篇关于最短路的题集,题目顺序随机. 算法思想什么的,我就随便说(复)说(制)咯: Dijkstra算法:以起始点为中心向外层层扩展,直到扩展到终点为止.有贪心的意思. 大 ...
- 【BZOJ4152】[AMPPZ2014]The Captain 最短路
[BZOJ4152][AMPPZ2014]The Captain Description 给定平面上的n个点,定义(x1,y1)到(x2,y2)的费用为min(|x1-x2|,|y1-y2|),求从1 ...
- BZOJ4152:[AMPPZ2014]The Captain——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=4152 给定平面上的n个点,定义(x1,y1)到(x2,y2)的费用为min(|x1-x2|,|y1 ...
- 【bzoj4152】[AMPPZ2014]The Captain 堆优化Dijkstra
题目描述 给定平面上的n个点,定义(x1,y1)到(x2,y2)的费用为min(|x1-x2|,|y1-y2|),求从1号点走到n号点的最小费用. 输入 第一行包含一个正整数n(2<=n< ...
- BZOJ 4144: [AMPPZ2014]Petrol
4144: [AMPPZ2014]Petrol Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 457 Solved: 170[Submit][Sta ...
- 循环队列+堆优化dijkstra最短路 BZOJ 4152: [AMPPZ2014]The Captain
循环队列基础知识 1.循环队列需要几个参数来确定 循环队列需要2个参数,front和rear 2.循环队列各个参数的含义 (1)队列初始化时,front和rear值都为零: (2)当队列不为空时,fr ...
随机推荐
- Windows OpenSSH 基本用法
笔者在前文<Windows 支持 OpenSSH 了!>中介绍了 Windows 对 OpenSSH 支持的基本内容,本文在前文的基础上介绍一些 OpenSSH Server 的配置和常见 ...
- 通过 JS 脚本去除csdn广告
1. chorme 浏览器 1.1 通过书签方式添加 新建书签: 在网址一栏中输入: javascript: $(function () { $('aside .csdn-tracking-stati ...
- CSS Grid 读书笔记
基本概念 MDN上的解释是这样的 CSS Grid Layout excels at dividing a page into major regions or defining the relati ...
- 4月27号开学! 第6期《jmeter实战接口自动化+性能》课程,零基础也能学
2019年 第6期<jmeter实战接口自动化+性能>课程,4月27号开学! 主讲老师:飞天小子 上课方式:QQ群视频在线教学 本期上课时间:4月27号-6月9号,每周六.周日晚上20:0 ...
- 大连CCPC D - A Simple Math Problem
#include<iostream> #include<string.h> #include<stdio.h> #include<algorithm> ...
- win64位安装python-mysqldb1.2.3
在其他版本的mysqldb里面时间查询有问题最后确定还是在 1.2.5 版本下来解决,需要解决的问题就是这个:“Cannot open include file: 'config-win.h': No ...
- Linux下用rm删除的文件的恢复方法
Linux下用rm删除的文件的恢复方法_Linux教程_Linux公社-Linux系统门户网站https://www.linuxidc.com/Linux/2008-08/14744.htm linu ...
- TCP 握手和挥手图解(有限状态机)
1.引言 TCP 这段看过好几遍,老是记不住,没办法找工作涉及到网络编程这块,各种问 TCP .今天好好整理一下握手和挥手过程.献给跟我一样忙碌,找工作的童鞋,欢迎大神批评指正. 2.TCP 的连接建 ...
- JMeter压测分布式部署
监控JMeter压力机的性能
- connect、resource和dba三种标准角色
授权语句:grant connect,resource,dba to zwserver 经过授权以后,用户拥有connect.resource和dba三个角色的权限: (1)Connect 角色,是授 ...