P2123 皇后游戏
题目背景
还记得 NOIP 2012 提高组 Day1 的国王游戏吗?时光飞逝,光阴荏苒,两年
过去了。国王游戏早已过时,如今已被皇后游戏取代,请你来解决类似于国王游
戏的另一个问题。
题目描述
皇后有 n 位大臣,每位大臣的左右手上面分别写上了一个正整数。恰逢国庆
节来临,皇后决定为 n 位大臣颁发奖金,其中第 i 位大臣所获得的奖金数目为第
i-1 位大臣所获得奖金数目与前 i 位大臣左手上的数的和的较大值再加上第 i 位
大臣右手上的数。
形式化地讲:我们设第 i 位大臣左手上的正整数为 ai,右手上的正整数为 bi,
则第 i 位大臣获得的奖金数目为 ci可以表达为:
当然,吝啬的皇后并不希望太多的奖金被发给大臣,所以她想请你来重新安
排一下队伍的顺序,使得获得奖金最多的大臣,所获奖金数目尽可能的少。
注意:重新安排队伍并不意味着一定要打乱顺序,我们允许不改变任何一
位大臣的位置。
输入输出格式
输入格式:
第一行包含一个正整数 T,表示测试数据的组数。
接下来 T 个部分,每个部分的第一行包含一个正整数 n,表示大臣的数目。
每个部分接下来 n 行中,每行两个正整数,分别为 ai和 bi,含义如上文所述。
输出格式:
共 T 行,每行包含一个整数,表示获得奖金最多的大臣所获得的奖金数目。
输入输出样例
- 2
- 5
- 85 100
- 95 99
- 76 87
- 60 97
- 79 85
- 12
- 9 68
- 18 45
- 52 61
- 39 83
- 63 67
- 45 99
- 52 54
- 82 100
- 23 54
- 99 94
- 63 100
- 52 68
- 528
- 902
说明
按照 1、2、3 这样排列队伍,获得最多奖金的大臣获得奖金的数目为 10;
按照 1、3、2 这样排列队伍,获得最多奖金的大臣获得奖金的数目为 9;
按照 2、1、3 这样排列队伍,获得最多奖金的大臣获得奖金的数目为 9;
按照 2、3、1 这样排列队伍,获得最多奖金的大臣获得奖金的数目为 8;
按照 3、1、2 这样排列队伍,获得最多奖金的大臣获得奖金的数目为 9;
按照 3、2、1 这样排列队伍,获得最多奖金的大臣获得奖金的数目为 8。
当按照 3、2、1 这样排列队伍时,三位大臣左右手的数分别为:
(1, 2)、(2, 2)、(4, 1)
第 1 位大臣获得的奖金为 1 + 2 = 3;
第 2 位大臣获得的奖金为 max{3, 3} + 2 = 5;
第 3 为大臣获得的奖金为 max{5, 7} + 1 = 8。
对于全部测试数据满足: T≤10T \le 10T≤10 , 1≤n≤20 0001 \le n \le 20\ 0001≤n≤20 000 , 1≤ai,bi≤1091 \le a_i, b_i \le 10^91≤ai,bi≤109 。
似乎是国王游戏的升级版,不过比国王游戏良心多了(不需要写高精度)。
主要难点在于表达式的推演。
只考虑两位大臣1,2,奖金a1+b1,max{a1+b1,a1+a2}+b2
若交换,则奖金变为a2+b2,max{a2+b2,a1+a2}+b1
由于奖金一定是单调递增,所以只要比较后两个。
变形可得a1+b2+max(b1,a2),a2+b1+max(b2,a1)
贪心排序,之后枚举计算总奖金。
- #include<algorithm>
- #include<iostream>
- #include<cstdio>
- using namespace std;
- const int N=;
- int T,n;
- long long ans,s,cst[N];
- struct node
- {
- long long l,r;
- }a[N];
- bool cmp(node c,node d)
- {
- return c.l+d.r+max(c.r,d.l)<c.r+d.l+max(c.l,d.r);
- }
- int main()
- {
- scanf("%d",&T);
- while(T--)
- {
- scanf("%d",&n);
- for(int i=;i<=n;i++)
- scanf("%lld%lld",&a[i].l,&a[i].r);
- sort(a+,a+n+,cmp);
- ans=cst[]=a[].l+a[].r,s=a[].l;
- for(int i=;i<=n;i++)
- {
- s+=a[i].l;
- cst[i]=max(cst[i-],s)+a[i].r;
- ans=max(ans,cst[i]);
- }
- printf("%lld\n",ans);
- }
- return ;
- }
P2123 皇后游戏的更多相关文章
- 洛谷 P2123 皇后游戏 解题报告
P2123 皇后游戏 题意: 给定\(T\)组长为\(n\)的\(A\),\(B\)数组和\(C\)的计算方法,求一种排列方法,使最大的\(C\)最小化. 数据范围: \(1 \le T \le 10 ...
- Luogu P2123 皇后游戏(贪心)
题目链接:P2123 皇后游戏 如果证明这个题为什么是贪心的话,我是不会的,但是一看这个题目就是一个贪心,然后满足贪心的性质: 都能从两个人(东西)扩展到n个人(东西) 一定能从相邻状态扩展到不相邻的 ...
- 【流水调度问题】【邻项交换对比】【Johnson法则】洛谷P1080国王游戏/P1248加工生产调度/P2123皇后游戏/P1541爬山
前提说明,因为我比较菜,关于理论性的证明大部分是搬来其他大佬的,相应地方有注明. 我自己写的部分换颜色来便于区分. 邻项交换对比是求一定条件下的最优排序的思想(个人理解).这部分最近做了一些题,就一起 ...
- [洛谷P2123]皇后游戏
很抱歉,这个题我做的解法不是正解,只是恰巧卡了数据 目前数据已经更新,这个题打算过一段时间再去写. 目前在学习DP,这个会暂时放一放,很抱歉 这个题是一个国王游戏的变形(国王游戏就把我虐了qwq) 题 ...
- luogu P2123 皇后游戏
传送门 跟国王游戏一样的分析 考虑相邻的两个大臣,设他们前面的\(\sum a_j\)为\(s\),同时注意到后面人的贡献更大 所以\(i\)在前面时,\(c_j=\max(\max(c_{last} ...
- [luogu P2123] 皇后游戏 解题报告(贪心)
题目链接:https://www.luogu.org/problemnew/show/P2123 题目大意: 给定a数组和b数组,要求最小化c数组中的最大值 题解: 考虑微扰法,推一波式子先 设$x= ...
- luoguP2123 皇后游戏——微扰法的应用与排序传递性的证明
题目背景 还记得 NOIP 2012 提高组 Day1 的国王游戏吗?时光飞逝,光阴荏苒,两年 过去了.国王游戏早已过时,如今已被皇后游戏取代,请你来解决类似于国王游 戏的另一个问题. 题目描述 皇后 ...
- luoguP2123 皇后游戏(贪心)
luoguP2123 皇后游戏(贪心) 题目 洛谷题目chuanso 题解 有一篇好题解,我就懒得推式子了,毕竟打到电脑上还是很难的 牛逼题解传送门 code #include<iostream ...
- 【洛谷P2123】皇后游戏
题目链接 这题的 实际上和"流水调度问题"是一样的 (我是不会告诉你我是看了讨论才知道的) 于是我就翻开了我们教练弄来的一本蓝不拉几的叫做"信息学奥赛一本通·提高篇&qu ...
随机推荐
- object detection[NMS]
非极大抑制,是在对象检测中用的较为频繁的方法,当在一个对象区域,框出了很多框,那么如下图: 上图来自这里 目的就是为了在这些框中找到最适合的那个框.有以下几种方式: 1 nms 2 soft-nms ...
- face detection[Face R-FCN]
本文来自<Detecting Faces Using Region-based Fully Convolutional Networks>,又是腾讯ai实验室的作品.时间线为2017年9月 ...
- keystone系列二:HTTP协议
一 为何要学习HTTP协议 http协议就是通信的双方共同遵守的标准,就好比要合伙办事的两家公司签署的合同. openstack中各组件是基于restful api通信的,restful api可以单 ...
- RabbitMQ 发布订阅
互联网公司对消息队列是深度使用者,因此需要我们了解消息队列的方方面面,良好的设计及深入的理解,更有利于我们对消息队列的规划. 当前我们使用消息队列中发现一些问题: 1.实际上是异步无返回远程调用,由发 ...
- Python全栈开发之路 【第十九篇】:Bootstrap
一.下载和基本使用 官方地址:www.bootcss.com 二.响应式介绍 1.@meida 媒体查询 (1)响应式页面 为了页面能够适应不同工具的屏幕大小的限制,而开发的一种自适应页面,即 一次开 ...
- 【评分】Alpha 事后诸葛亮(团队)
[评分]Alpha 事后诸葛亮(团队) 总结 按时交 - 有分 晚交 - 0分 迟交一周以上 - 倒扣本次作业分数 抄袭 - 倒扣本次作业分数 本次作业都是以问答形式进行,大部分同学在回答问题方面都一 ...
- 学习WebSocket
初识WebSocket: index.html <!DOCTYPE html> <html> <head> <meta charset="UTF-8 ...
- rem移动端适配方案
一. rem vs em 单位 定义 特点 rem font size of the root element 以根元素字体大小为基准 em font size of the element 以父元素 ...
- Tomcat启用GZIP压缩,提升web性能
一.前言 最近做了个项目,遇到这么一个问题:服务器返回给客户端的json数据量太大(大概65M),在客户端加载了1分多钟才渲染完毕,费时耗流量,用户体验极其不好.后来网上搜优化的方法,就是Http压缩 ...
- [转帖]xargs命令详解,xargs与管道的区别
xargs命令详解,xargs与管道的区别 https://www.cnblogs.com/wangqiguo/p/6464234.html 之前一直说要学习一下 xargs 到现在为止也没学习.. ...