[sklearn] 实现随即梯度下降(SGD)&分类器评价参数查看
直接贴代码吧:
1 # -*- coding:UTF-8 -*-
2 from sklearn import datasets
3 from sklearn.cross_validation import train_test_split
4 from sklearn import preprocessing
5 from sklearn.linear_model import SGDClassifier
6 from sklearn import metrics
7 iris = datasets.load_iris()
8 X_iris, y_iris = iris.data, iris.target
9 X, y = X_iris[:,:2], y_iris
10 # 将数据分为训练集和测试集
11 X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.25, random_state=33)
12 # 标准化数据
13 scaler = preprocessing.StandardScaler().fit(X_train)
14 X_train = scaler.transform(X_train)
15 X_test = scaler.transform(X_test)
16 # 初始化分类器对象
17 clf = SGDClassifier()
18 clf.fit(X_train,y_train)
19 y_pred = clf.predict(X_test)
20 # 评估分类器的表现
21 print metrics.accuracy_score(y_test,y_pred)
22 print metrics.classification_report(y_test, y_pred, target_names=iris.target_names)
23 # confusion 矩阵
24 print metrics.confusion_matrix(y_test,y_pred)
参考:《learning scikit-learn machine learning in python》
[sklearn] 实现随即梯度下降(SGD)&分类器评价参数查看的更多相关文章
- 优化-最小化损失函数的三种主要方法:梯度下降(BGD)、随机梯度下降(SGD)、mini-batch SGD
优化函数 损失函数 BGD 我们平时说的梯度现将也叫做最速梯度下降,也叫做批量梯度下降(Batch Gradient Descent). 对目标(损失)函数求导 沿导数相反方向移动参数 在梯度下降中, ...
- 批量梯度下降(BGD)、随机梯度下降(SGD)以及小批量梯度下降(MBGD)的理解
梯度下降法作为机器学习中较常使用的优化算法,其有着三种不同的形式:批量梯度下降(Batch Gradient Descent).随机梯度下降(Stochastic Gradient Descent ...
- 梯度下降GD,随机梯度下降SGD,小批量梯度下降MBGD
阅读过程中的其他解释: Batch和miniBatch:(广义)离线和在线的不同
- 梯度下降:SGD vs Momentum vs NAG vs Adagrad vs Adadelta vs RMSprop vs Adam
原文地址:https://www.jianshu.com/p/7a049ae73f56 梯度下降优化基本公式:\({\theta\leftarrow\theta-\eta\cdot\nabla_\th ...
- Pytorch_第七篇_深度学习 (DeepLearning) 基础 [3]---梯度下降
深度学习 (DeepLearning) 基础 [3]---梯度下降法 Introduce 在上一篇"深度学习 (DeepLearning) 基础 [2]---神经网络常用的损失函数" ...
- sklearn使用——梯度下降及逻辑回归
一:梯度下降: 梯度下降本质上是对极小值的无限逼近.先求得梯度,再取其反方向,以定步长在此方向上走一步,下次计算则从此点开始,一步步接近极小值.需要注意的是步长的取值,如果过小,则需要多次迭代,耗费大 ...
- 为什么是梯度下降?SGD
在机器学习算法中,为了优化损失函数loss function ,我们往往采用梯度下降算法来进行优化.举个例子: 线性SVM的得分函数和损失函数分别为: ...
- 各种梯度下降 bgd sgd mbgd adam
转载 https://blog.csdn.net/itchosen/article/details/77200322 各种神经网络优化算法:从梯度下降到Adam方法 在调整模型更新权重和偏差 ...
- 深度学习笔记之【随机梯度下降(SGD)】
随机梯度下降 几乎所有的深度学习算法都用到了一个非常重要的算法:随机梯度下降(stochastic gradient descent,SGD) 随机梯度下降是梯度下降算法的一个扩展 机器学习中一个反复 ...
随机推荐
- Mysql数据约束 整理
数据约束 1.默认值: 作用: 当用户对使用默认值的字段不插入值的时候,就使用默认值. 注意: 1)对默认值字段插入null是可以的. 2)对默认值字段可以插入非null CREATE TABLE ...
- ADB interface驱动
原文地址:https://blog.csdn.net/weixin_42108952/article/details/80153402
- 运维监控-Zabbix Server 使用微信 WeChat 告警
运维监控-Zabbix Server 使用微信 WeChat 告警 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 微信公众号告警每个一天只支持1000次告警,如果超出这个次数了就不 ...
- 腾讯云ping wget yum 常用命令设置问题
遇到ping wget yum 命令不能正常使用的情况是因为腾讯云有些配置: root执行如下即可: wget -q http://mirrors.tencentyun.com/install/sof ...
- Java NIO系列教程(七) selector原理 Epoll版的Selector
目录: Reactor(反应堆)和Proactor(前摄器) <I/O模型之三:两种高性能 I/O 设计模式 Reactor 和 Proactor> <[转]第8章 前摄器(Proa ...
- vscode 配置踩坑记
vscode-easy-less 遇到问题最好的解决方式是看官网文档,切记!!! 在web开发当中,经常会写less然后编译成css,当然在VS Code当中也有这样的插件(EasyLess), 但是 ...
- ES学习之分片路由
本文主要内容: 1.路由一个文档到一个分片 2.新建.索引和删除请求 3.取回单个文档 4.局部单个文档 5.多文档模式 6.理解一下ES深度分页(from-size)的劣势 路由一个文档到一个分片 ...
- 关于js事件执行顺序
关于js事件执行顺序小技巧 js事件执行顺序是js中一个老生常谈的一个话题, 聊这个话题之前我们先谈谈怎么给页面元素绑定我们需要的事件 1.给页面元素绑定事件 a)直接在元素上面加上需要绑定的事件,如 ...
- MVC、MVP和MVVC区别
https://blog.csdn.net/victoryzn/article/details/78392128
- springBoot----aop--整合日志相关
springBoot整合日志相关 1:新建log4j.properties文件 : log4j.properties: #log4j.rootLogger=CONSOLE,info,error,DEB ...