【XSY2719】prime 莫比乌斯反演
题目描述
设\(f(i)\)为\(i\)的不同的质因子个数,求\(\sum_{i=1}^n2^{f(i)}\)
\(n\leq{10}^{12}\)
题解
考虑\(2^{f(i)}\)的意义:有\(f(i)\)总因子,每种可以分给两个人中的一个。那么就有\(2^{f(i)}=\sum_{d|i}[\gcd(d,\frac{i}{d})=1]\)
然后就是简单莫比乌斯反演了。
s&=\sum_{i=1}^n\sum_{d|i}[\gcd(d,\frac{i}{d})=1]\\
&=\sum_{i=1}^n\sum_{d|i}\sum_{j|d\text{&&}j|\frac{i}{d}}\mu(j)\\
&=\sum_{i=1}^n\sum_{j^2|i}g(\frac{i}{j^2})\mu(j)\\
&=\sum_{j=1}^\sqrt{n}\mu(j)\sum_{i=1}^{\lfloor\frac{n}{j^2}\rfloor}g(i)\\
&=\sum_{j=1}^\sqrt{n}\mu(j)\sum_{i=1}^{\lfloor\frac{n}{j^2}\rfloor}\lfloor\frac{n}{j^2i}\rfloor
\end{align}
\]
时间复杂度:\(O(\sqrt n\log n)\)
代码
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
const ll p=998244353;
ll gao(ll x)
{
ll s=0;
ll i,j;
for(i=1;i<=x;i=j+1)
{
j=x/(x/i);
s+=(x/i)*(j-i+1);
}
return s;
}
int b[1000010];
int pri[1000010];
int cnt;
int miu[1000010];
int main()
{
ll i,j;
miu[1]=1;
for(i=2;i<=1000000;i++)
{
if(!b[i])
{
pri[++cnt]=i;
miu[i]=-1;
}
for(j=1;j<=cnt&&i*pri[j]<=1000000;j++)
{
b[i*pri[j]]=1;
if(i%pri[j]==0)
{
miu[i*pri[j]]=0;
break;
}
miu[i*pri[j]]=-miu[i];
}
}
ll ans=0;
ll n;
scanf("%lld",&n);
for(i=1;i*i<=n;i++)
ans=(ans+miu[i]*gao(n/(i*i)))%p;
ans=(ans+p)%p;
printf("%lld\n",ans);
return 0;
}
【XSY2719】prime 莫比乌斯反演的更多相关文章
- hdu1695 GCD(莫比乌斯反演)
题意:求(1,b)区间和(1,d)区间里面gcd(x, y) = k的数的对数(1<=x<=b , 1<= y <= d). 知识点: 莫比乌斯反演/*12*/ 线性筛求莫比乌 ...
- Bzoj2154 Crash的数字表格 乘法逆元+莫比乌斯反演(TLE)
题意:求sigma{lcm(i,j)},1<=i<=n,1<=j<=m 不妨令n<=m 首先把lcm(i,j)转成i*j/gcd(i,j) 正解不会...总之最后化出来的 ...
- 【BZOJ-2440】完全平方数 容斥原理 + 线性筛莫比乌斯反演函数 + 二分判定
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2371 Solved: 1143[Submit][Sta ...
- POI2007_zap 莫比乌斯反演
题意:http://hzwer.com/4205.html 同hdu1695 #include <iostream> #include <cstring> #include & ...
- hdu.5212.Code(莫比乌斯反演 && 埃氏筛)
Code Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Total Submi ...
- CSU 1325 莫比乌斯反演
题目大意: 一.有多少个有序数对(x,y)满足1<=x<=A,1<=y<=B,并且gcd(x,y)为p的一个约数: 二.有多少个有序数对(x,y)满足1<=x<=A ...
- HDU 1695 GCD (莫比乌斯反演)
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- 【BZOJ-4407】于神之怒加强版 莫比乌斯反演 + 线性筛
4407: 于神之怒加强版 Time Limit: 80 Sec Memory Limit: 512 MBSubmit: 241 Solved: 119[Submit][Status][Discu ...
- hdu1695 莫比乌斯反演
莫比乌斯反演:可参考论文:<POI XIV Stage.1 <Queries>解题报告By Kwc-Oliver> 求莫比乌斯函数mu[i]:(kuangbin模板) http ...
随机推荐
- VirtualBox安装复制Centos6.6配置网络
由于要搭建mongodb的集群,先用虚拟机做下相关实验,以前都用VM Vare,但是现在这个电脑的配置不是太好,VM Vare比较耗资源,所以选择VirtualBox. 1.下载VirtualBox和 ...
- Python api接口和SQL数据库关联
数据库表创建 服务器环境配置.连接 .操作.数据库 API接口 原则:
- 2017湘潭大学邀请赛G题(贪心+优先队列)
参考博客:http://www.cnblogs.com/chendl111/p/6891770.html 题目链接:https://www.icpc.camp/contests/4mYguiUR8k0 ...
- pycharm导入自己写的.py文件时,模块下方出现红色波浪线解决
点击菜单栏的File,选择Setting, 然后,选择需要导入的.py文件“所在的目录",而非项目根目录,右键 之后再导入该.py文件就不会出现红色波浪线了.
- rest-framework解析器,url控制,分页,响应器,渲染器,版本控制
解析器 1.json解析器 发一个json格式的post请求.后台打印: request_data---> {'title': '北京折叠'} request.POST---> <Q ...
- 【转】shell之for、while、until循环
一.简介 Shell编程中循环命令用于特定条件下决定某些语句重复执行的控制方式,有三种常用的循环语句:for.while和until.while循环和for循环属于“当型循环”,而unti ...
- MySQL慢查询日志配置方式 slow_query_log
MySQL慢查询(一) - 开启慢查询 - 鲁玉成 - 博客园 https://www.cnblogs.com/luyucheng/p/6265594.html mysql开启慢查询方法 - lava ...
- Vmware的虚拟机示例进入BIOS方法
虚拟机(Vmware)怎么进入BIOS_百度经验 https://jingyan.baidu.com/article/7e440953e566472fc0e2eff7.html Vmware虚拟机进入 ...
- IDEA 各版本在线激活(激活码)
lan yu 大佬的授权又被封杀了,还好我收藏了一些其他的服务器地址. 在线授权服务器 https://jetlicense.nss.im/ 授权代码 K03CHKJCFT-eyJsaWNlbnNlS ...
- synchronized无法禁止指令重排序的证明
package demo.reorder; import java.util.concurrent.ExecutorService; import java.util.concurrent.Execu ...