题目描述

  三倍经验题。

  给你\(n,m\),求

\[\sum_{i=1}^ni^mm^i
\]

  \(n\leq {10}^9,1\leq m\leq 500000\)

题解

  当\(m=1\)时\(ans=\frac{n(n+1)}{2}\)

  剩下的部分这篇博客有讲YWW's Blog

  时间复杂度:\(O(m+\log n)\)

代码

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
const ll p=1000000007;
ll fp(ll a,ll b)
{
ll s=1;
for(;b;b>>=1,a=a*a%p)
if(b&1)
s=s*a%p;
return s;
}
int pri[100010];
int b[1000010];
int cnt;
ll s[1000010];
ll fac[1000010];
ll ifac[1000010];
ll inv[1000010];
ll f1[1000010];
ll f2[1000010];
ll f[1000010];
ll pre[1000010];
ll suf[1000010];
ll getc(int x,int y)
{
return fac[x]*ifac[y]%p*ifac[x-y]%p;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj4126.in","r",stdin);
freopen("bzoj4126.out","w",stdout);
#endif
int n,m;
scanf("%d%d",&n,&m);
if(m==1)
{
printf("%lld\n",ll(n)*(n+1)/2%p);
return 0;
}
n++;
fac[0]=fac[1]=ifac[0]=ifac[1]=inv[1]=1;
for(int i=2;i<=m+2;i++)
{
inv[i]=-p/i*inv[p%i]%p;
ifac[i]=ifac[i-1]*inv[i]%p;
fac[i]=fac[i-1]*i%p;
}
s[0]=0;
s[1]=1;
for(int i=2;i<=m+2;i++)
{
if(!b[i])
{
s[i]=fp(i,m);
pri[++cnt]=i;
}
for(int j=1;j<=cnt&&i*pri[j]<=m+2;j++)
{
b[i*pri[j]]=1;
s[i*pri[j]]=s[i]*s[pri[j]]%p;
if(i%pri[j]==0)
break;
}
}
f1[0]=1;
f2[0]=0;
ll invm=fp(m,p-2);
for(int i=1;i<=m+1;i++)
{
f1[i]=f1[i-1]*invm%p;
f2[i]=(f2[i-1]+s[i-1])*invm%p;
}
ll v1=0,v2=0;
for(int i=0;i<=m+1;i++)
{
v1=(v1+((m+1-i)&1?-1:1)*getc(m+1,i)*f1[i])%p;
v2=(v2+((m+1-i)&1?-1:1)*getc(m+1,i)*f2[i])%p;
}
f[0]=-v2*fp(v1,p-2)%p;
for(int i=1;i<=m+1;i++)
f[i]=(f1[i]*f[0]+f2[i])%p;
if(n<=m+1)
{
ll ans=fp(m,n)*f[n]-f[0];
ans=(ans%p+p)%p;
printf("%lld\n",ans);
return 0;
}
for(int i=0;i<=m;i++)
{
pre[i]=n-i;
if(i)
pre[i]=pre[i-1]*pre[i]%p;
}
for(int i=m;i>=0;i--)
{
suf[i]=n-i;
if(i!=m)
suf[i]=suf[i+1]*suf[i]%p;
}
ll ans=0;
for(int i=0;i<=m;i++)
{
ll v=1;
if(i)
v=v*pre[i-1]%p;
if(i!=m)
v=v*suf[i+1]%p;
ans=(ans+f[i]*v%p*ifac[i]%p*ifac[m-i]%p*((m-i)&1?-1:1))%p;
}
ans=fp(m,n)*ans-f[0];
ans=(ans%p+p)%p;
printf("%lld\n",ans);
return 0;
}

【BZOJ4126】【BZOJ3516】【BZOJ3157】国王奇遇记 线性插值的更多相关文章

  1. bzoj3157: 国王奇遇记

    emmm...... 直接看题解好了: BZOJ-3157. 国王奇遇记 – Miskcoo's Space O(m)不懂扔掉 总之,给我们另一个处理复杂求和的方法: 找到函数之间的递推公式! 这里用 ...

  2. bzoj3157国王奇遇记(秦九韶算法+矩乘)&&bzoj233AC达成

    bz第233题,用一种233333333的做法过掉了(为啥我YY出一个算法来就是全网最慢的啊...) 题意:求sigma{(i^m)*(m^i),1<=i<=n},n<=10^9,m ...

  3. BZOJ3157: 国王奇遇记 & 3516: 国王奇遇记加强版

    令\[S_i=\sum_{k=1}^n k^i m^k\]我们有\[\begin{eqnarray*}(m-1)S_i & = & mS_i - S_i \\& = & ...

  4. 扰动法--*BZOJ3157: 国王奇遇记

    求$\sum_{i=1}^ni^mm^i$.$n \leq 1e9,m \leq 200$. 其实我也不知道这东西为啥叫“扰动法”,大概是在黑暗的边缘试探?就是那种,人家再多一点就被您看破了,然后您就 ...

  5. BZOJ3157 国王奇遇记——神奇的推式子

    先膜一发Miskcoo,大佬的博客上多项式相关的非常全 原题戳我 题目大意 求 \[\sum\limits_{i=1}^{n}i^mm^i\] 题解 设一个函数\(f(i)=\sum\limits_{ ...

  6. 【BZOJ3157/3516】国王奇遇记(数论)

    [BZOJ3157/3516]国王奇遇记(数论) 题面 BZOJ3157 BZOJ3516 题解 先考虑怎么做\(m\le 100\)的情况. 令\(f(n,k)=\displaystyle \sum ...

  7. 【BZOJ】【3157】&【BZOJ】【3516】国王奇遇记

    数论 题解:http://www.cnblogs.com/zhuohan123/p/3726933.html copy一下推导过程: 令$$S_i=\sum_{k=1}^{n}k^im^k$$ 我们有 ...

  8. BZOJ3157/BZOJ3516 国王奇遇记(矩阵快速幂/数学)

    由二项式定理,(m+1)k=ΣC(k,i)*mi.由此可以构造矩阵转移,将mi*ik全部塞进去即可,系数即为组合数*m.复杂度O(m3logn),因为大常数喜闻乐见的T掉了. #include< ...

  9. bzoj3157 3516 国王奇遇记

    Description Input 共一行包括两个正整数N和M. Output 共一行为所求表达式的值对10^9+7取模的值. 特判m=1 m≠1时: 设S[u]=sigma(i^u*m^i) m*S ...

随机推荐

  1. H5 表单标签

    33-表单标签3 列表数据 注意点: 1.下拉列表不能输入内容, 但是可以直接在列表中选择内容 2.可以通过给option标签添加一个selected属性来指定列表的默认值 3.可以通过给option ...

  2. Wannafly summer camp Day6 - D 区间权值

    这道题实在是不该,我在化式子的时候,多此一举,把式子进行累加,导致自己当时化的式子是错的,这样导致自己卡了很久,也没想到好的思路,赛后重新分析一波,感觉巨™简单...难受的一逼. 这道题的关键在于,W ...

  3. CentOS7源码升级OpenSSL和OpenSSH

    一.CentOS7升级OpenSSL 1.查看ssl版本及下载相关依赖包 openssl version -a yum install -y gcc openssl-devel pam-devel r ...

  4. XT535

    今天金山误删了一个文件,把手机系统整坏了,故刷了个机,刷机教程: http://bbs.dospy.com/thread-15027415-1-623-1.html 中间安装了个驱动精灵,否则手机开启 ...

  5. 持续集成之Jenkins自动部署war包到远程服务器

    一.无war包链接的情况 无war包链接时,需先下载war包到本地,然后执行: ---------------------------------------------以下部分为转载-------- ...

  6. JMeter中返回Json数据的处理方法(转)

    Json 作为一种数据交换格式在网络开发,特别是 Ajax 与 Restful 架构中应用的越来越广泛.而 Apache 的 JMeter 也是较受欢迎的压力测试工具之一,但是它本身没有提供对于 Js ...

  7. 05 Hadoop 设置块的大小

    1.是在hdfs的配置文件中配置 2.是在app程序中设置 注意:假设配置文件的最大是   20K   最小是 10K   文件大小为72  块数就是 4 在程序中设置最大为15K    切割块数  ...

  8. webservice服务的提供及调用完整代码示例

    服务提供方: applicationContext.xml applicationContext-webService.xml  服务调用方:

  9. Laravel5.5+ 区分前后端用户登录

    Laravel 的用户认证是通过 Auth Facade 门脸实现的,手动认证可是使用  Auth::login() 或 Auth::attempt() 这两个方法实现. 以下内容纯属个人实现,也许有 ...

  10. 创建虚拟目录失败,必须为服务器名称指定“localhost”

    关于微信开发过程,远程调试后,再次打开vs出现项目加载失败的解决办法! 第一步: 第二步:打开编辑的页面,把下图这部分直接注释掉 ok了,再加载一次,就好了!