传送门:>Here<

题目大意:先抛出了一个问题——“已知一个序列,将此序列中的元素划分成几组(不需要连续)使得每一组中的任意两个数的乘积都是完全平方数。特殊的,一个数可以为一组。先要求最少分几组。”在这个问题的基础上,给出一个长度为n的序列$a_i$,该序列有\(\frac{n(n+1)}{2}\)个子串,求每个子串对于上面这个问题最少划分几次。并分别统计最少划分k次的子串有几个。$(n \leq 5000, |a_i| \leq 10^8)$

解题思路

两个数的乘积为完全平方数,当且仅当两个数都为完全平方数,或者两个数相等。我们考虑放宽一下要求,如果只要求两个数相等,那么题目就变成求区间颜色个数的经典问题了。我们发现,如果我们将每个数的完全平方因子除去,那么所有完全平方数都变成1了,然而并不会影响答案。这样就只剩下两数相等的条件了。

求解所有区间的颜色个数和——常规做法是只让首次出现的颜色产生贡献。这需要我们统计每个数之前出现的相同数的位置。

关于除掉完全平方因子,注意要从大到小除。

Code

/*By QiXingzhi*/
#include <cstdio>
#include <cmath>
#define r read()
#define Max(a,b) (((a)>(b)) ? (a) : (b))
#define Min(a,b) (((a)<(b)) ? (a) : (b))
using namespace std;
typedef long long ll;
const int N = ;
const int INF = ;
inline int read(){
int x = ; int w = ; register int c = getchar();
while(c ^ '-' && (c < '' || c > '')) c = getchar();
if(c == '-') w = -, c = getchar();
while(c >= '' && c <= '') x = (x << ) +(x << ) + c - '', c = getchar();
return x * w;
}
int n,m;
int a[N],ans[N],f[N];
inline int GetNotSquare(int x){
int k = ceil(sqrt(abs(x)));
for(int i = ; i <= k; ++i){
while(x % (i*i) == ){
x /= i*i;
}
}
return x;
}
int main(){
n = r;
for(int i = ; i <= n; ++i){
a[i] = r;
a[i] = GetNotSquare(a[i]);
}
f[] = -;
for(int i = ; i <= n; ++i){
f[i] = -;
for(int j = i-; j >= ; --j){
if(a[i] == a[j]){
f[i] = j;
break;
}
}
}
for(int i = ; i <= n; ++i){
int num = ;
for(int j = i; j <= n; ++j){
if(f[j] < i && a[j] != ){
++num;
}
if(num == ){
++ans[];
}
else ++ans[num];
}
}
for(int i = ; i <= n; ++i) printf("%d ",ans[i]);
return ;
}

Codeforces980 D. Perfect Groups的更多相关文章

  1. Codeforces 980 D. Perfect Groups

    \(>Codeforces\space980 D. Perfect Groups<\) 题目大意 : 设 \(F(S)\) 表示在集合\(S\)中把元素划分成若干组,使得每组内元素两两相乘 ...

  2. CF 980D Perfect Groups(数论)

    CF 980D Perfect Groups(数论) 一个数组a的子序列划分仅当这样是合法的:每个划分中的任意两个数乘积是完全平方数.定义a的权值为a的最小子序列划分个数.现在给出一个数组b,问权值为 ...

  3. Codeforces 980D Perfect Groups 计数

    原文链接https://www.cnblogs.com/zhouzhendong/p/9074164.html 题目传送门 - Codeforces 980D 题意 $\rm Codeforces$ ...

  4. codeforces 980D Perfect Groups

    题意: 有这样一个问题,给出一个数组,把里面的数字分组,使得每一个组里面的数两两相乘都是完全平方数. 问最少可以分成的组数k是多少. 现在一个人有一个数组,他想知道这个数组的连续子数组中,使得上面的问 ...

  5. Perfect Groups CodeForces - 980D

    链接 题目大意: 定义一个问题: 求集合$S$的最小划分数,使得每个划分内任意两个元素积均为完全平方数. 给定$n$元素序列$a$, 对$a$的所有子区间, 求出上述问题的结果, 最后要求输出所有结果 ...

  6. cf980d Perfect Groups

    题意 定义一个串的权值是将其划分成 \(k\) 组,使得每一组在满足"从组里选出一个数,再从组里选出一个数,它们的乘积没有平方因子"这样的前提时的最小的 \(k\).每组的数不必相 ...

  7. cf round480D Perfect Groups

    题意:给一个序列,对于每一个连续的区间,区间内的数至少分成几个组,使得每个组内的数任意2个相乘是一个完全平方数(包括0). 输出每个组数的个数. $n \leq 5000 , |a_i| \leq 1 ...

  8. Understanding Kafka Consumer Groups and Consumer Lag

    In this post, we will dive into the consumer side of this application ecosystem, which means looking ...

  9. Swift3.0服务端开发(一) 完整示例概述及Perfect环境搭建与配置(服务端+iOS端)

    本篇博客算是一个开头,接下来会持续更新使用Swift3.0开发服务端相关的博客.当然,我们使用目前使用Swift开发服务端较为成熟的框架Perfect来实现.Perfect框架是加拿大一个创业团队开发 ...

随机推荐

  1. 六、Xadmin忘记密码

    1.如果用的是django自带的User模块,忘记了超级用户的密码,可以通过以下方法找回密码: 终端进入项目根目录,然后输入如下命令: python manage.py shell 然后在python ...

  2. 200 ok 几种状态

    浏览器加载资源成功一般会有几种状态 200 ok   ----  从原始服务器请求成功 200 ok from cache    ---- 200 ok from disk cache  ---- 2 ...

  3. Linux下php安装redis扩展(redis已经安装)

     1. 下载需要的php操作redis的扩展包 (1).切换到 cd  /usr/local/src (2).   wget https://github.com/nicolasff/phpredis ...

  4. Python文本处理

    文本处理 (一)对文本操作的流程: 打开文件,得到文件句柄并赋值给一个变量 通过句柄对文件进行操作 关闭文件 open(file, mode='r', buffering=None, encoding ...

  5. JoinPoint

    “JoinPoint对象封装了SpringAop中切面方法的信息,在切面方法中添加JoinPoint参数,就可以获取到封装了该方法信息的JoinPoint对象. ” JoinPoint适用于注解和Sc ...

  6. WebSocket实现一个聊天室

    聊天室页面-->index.html <!DOCTYPE html> <html> <head> <meta charset="UTF-8&q ...

  7. JDK8 的FullGC 之 metaspace

    JDK8 的FullGC 之 metaspace - 简书https://www.jianshu.com/p/1a0b4bf8d498

  8. FAIL - Deploy Upload Failed, Exception: [org.apache.tomcat.util.http.fileupload.FileUploadBase$SizeLimitExceededException: the request was rejected because its size (112503036) exceeds the configured

    Message:  FAIL - Deploy Upload Failed, Exception: [org.apache.tomcat.util.http.fileupload.FileUpload ...

  9. EF内容记录_EF连接Mysql版本问题

    EF连接MySQL可用版本,由于EF.MySQLConnection.mysql-for-visualstudio.VS版本.MySQL.Data.MySQL.Data.Entity版本问题较花时间, ...

  10. 便捷的ajax请求

    为什么要做这个呢?如果后端给的数据不单有JSON字符串,还有对象呢?这个时候我们就要每个都处理(JSON.parse).万一后端又改了,所有都是对象呢?如此一来我们就需要对我们的ajax进行封装. 这 ...