Codeforces980 D. Perfect Groups
传送门:>Here<
题目大意:先抛出了一个问题——“已知一个序列,将此序列中的元素划分成几组(不需要连续)使得每一组中的任意两个数的乘积都是完全平方数。特殊的,一个数可以为一组。先要求最少分几组。”在这个问题的基础上,给出一个长度为n的序列$a_i$,该序列有\(\frac{n(n+1)}{2}\)个子串,求每个子串对于上面这个问题最少划分几次。并分别统计最少划分k次的子串有几个。$(n \leq 5000, |a_i| \leq 10^8)$
解题思路
两个数的乘积为完全平方数,当且仅当两个数都为完全平方数,或者两个数相等。我们考虑放宽一下要求,如果只要求两个数相等,那么题目就变成求区间颜色个数的经典问题了。我们发现,如果我们将每个数的完全平方因子除去,那么所有完全平方数都变成1了,然而并不会影响答案。这样就只剩下两数相等的条件了。
求解所有区间的颜色个数和——常规做法是只让首次出现的颜色产生贡献。这需要我们统计每个数之前出现的相同数的位置。
关于除掉完全平方因子,注意要从大到小除。
Code
/*By QiXingzhi*/
#include <cstdio>
#include <cmath>
#define r read()
#define Max(a,b) (((a)>(b)) ? (a) : (b))
#define Min(a,b) (((a)<(b)) ? (a) : (b))
using namespace std;
typedef long long ll;
const int N = ;
const int INF = ;
inline int read(){
int x = ; int w = ; register int c = getchar();
while(c ^ '-' && (c < '' || c > '')) c = getchar();
if(c == '-') w = -, c = getchar();
while(c >= '' && c <= '') x = (x << ) +(x << ) + c - '', c = getchar();
return x * w;
}
int n,m;
int a[N],ans[N],f[N];
inline int GetNotSquare(int x){
int k = ceil(sqrt(abs(x)));
for(int i = ; i <= k; ++i){
while(x % (i*i) == ){
x /= i*i;
}
}
return x;
}
int main(){
n = r;
for(int i = ; i <= n; ++i){
a[i] = r;
a[i] = GetNotSquare(a[i]);
}
f[] = -;
for(int i = ; i <= n; ++i){
f[i] = -;
for(int j = i-; j >= ; --j){
if(a[i] == a[j]){
f[i] = j;
break;
}
}
}
for(int i = ; i <= n; ++i){
int num = ;
for(int j = i; j <= n; ++j){
if(f[j] < i && a[j] != ){
++num;
}
if(num == ){
++ans[];
}
else ++ans[num];
}
}
for(int i = ; i <= n; ++i) printf("%d ",ans[i]);
return ;
}
Codeforces980 D. Perfect Groups的更多相关文章
- Codeforces 980 D. Perfect Groups
\(>Codeforces\space980 D. Perfect Groups<\) 题目大意 : 设 \(F(S)\) 表示在集合\(S\)中把元素划分成若干组,使得每组内元素两两相乘 ...
- CF 980D Perfect Groups(数论)
CF 980D Perfect Groups(数论) 一个数组a的子序列划分仅当这样是合法的:每个划分中的任意两个数乘积是完全平方数.定义a的权值为a的最小子序列划分个数.现在给出一个数组b,问权值为 ...
- Codeforces 980D Perfect Groups 计数
原文链接https://www.cnblogs.com/zhouzhendong/p/9074164.html 题目传送门 - Codeforces 980D 题意 $\rm Codeforces$ ...
- codeforces 980D Perfect Groups
题意: 有这样一个问题,给出一个数组,把里面的数字分组,使得每一个组里面的数两两相乘都是完全平方数. 问最少可以分成的组数k是多少. 现在一个人有一个数组,他想知道这个数组的连续子数组中,使得上面的问 ...
- Perfect Groups CodeForces - 980D
链接 题目大意: 定义一个问题: 求集合$S$的最小划分数,使得每个划分内任意两个元素积均为完全平方数. 给定$n$元素序列$a$, 对$a$的所有子区间, 求出上述问题的结果, 最后要求输出所有结果 ...
- cf980d Perfect Groups
题意 定义一个串的权值是将其划分成 \(k\) 组,使得每一组在满足"从组里选出一个数,再从组里选出一个数,它们的乘积没有平方因子"这样的前提时的最小的 \(k\).每组的数不必相 ...
- cf round480D Perfect Groups
题意:给一个序列,对于每一个连续的区间,区间内的数至少分成几个组,使得每个组内的数任意2个相乘是一个完全平方数(包括0). 输出每个组数的个数. $n \leq 5000 , |a_i| \leq 1 ...
- Understanding Kafka Consumer Groups and Consumer Lag
In this post, we will dive into the consumer side of this application ecosystem, which means looking ...
- Swift3.0服务端开发(一) 完整示例概述及Perfect环境搭建与配置(服务端+iOS端)
本篇博客算是一个开头,接下来会持续更新使用Swift3.0开发服务端相关的博客.当然,我们使用目前使用Swift开发服务端较为成熟的框架Perfect来实现.Perfect框架是加拿大一个创业团队开发 ...
随机推荐
- WCF系列教程之消息交换模式之请求与答复模式(Request/Reply)
1.使用WCF请求与答复模式须知 (1).客户端调用WCF服务端需要等待服务端的返回,即使返回类型是void (2).相比Duplex来讲,这种模式强调的是客户端的被动接受,也就是说客户端接受到响应后 ...
- prometeus, grafana部署以及监控mysql
什么是普罗米修斯? Prometheus是一个最初在SoundCloud上构建的开源系统监视和警报工具包 .自2012年成立以来,许多公司和组织都采用了Prometheus,该项目拥有一个非常活跃的开 ...
- 《React Native 精解与实战》书籍连载「React Native 中的生命周期」
此文是我的出版书籍<React Native 精解与实战>连载分享,此书由机械工业出版社出版,书中详解了 React Native 框架底层原理.React Native 组件布局.组件与 ...
- python 获取lazada菲律宾站地址库
import urllib3 import requests import ast import time # 因为lazada返回的数据是json类型,通过解码成字符串类型,为了方便数据操作,使用字 ...
- HDFS的命令
.....Hdfs dfs -cat path hadoop fs - 等同 1 -ls 查看当前目录的文件和文件夹 2 -lsr 递归查看 3 -du 查看文件的大小 4-dus 查看文件夹中所有的 ...
- Is-a
在知识表示.面向对象程序设计与面向对象设计的领域里, is-a(英语:subsumption,包含架构)指的是类的父子继承关系, 例如类D是另一个类B的子类(类B是类D的父类). 换句话说,通常&qu ...
- K8S、云计算、大数据、编程语言
云计算.大数据.编程语言学习指南下载,100+技术课程免费学!这份诚意满满的新年技术大礼包,你Get了吗?-云栖社区-阿里云https://yq.aliyun.com/articles/691028 ...
- C\C++学习笔记 1
C++记录1 C的头文件为math.h C++的为 cmath using编译指令 namespace 区分不同产品的函数.Mics::cout Linux::cout cout << 即 ...
- centos 6.5 查看时区和设置时区
centos6.x 和centos7.x在时区方面有点差距,本文是针对centos6.x进行介绍. 其实在我的一个博文里,在安装系统的时候就可以进行时区的设置,本文介绍的是用命令进行时区查看和设置. ...
- CLOUD不审核修改物料