洛谷P1414又是毕业季二题解
思想:
首先这个题必定是一个数学题,肯定不是一个一个枚举得到解,这样肯定会T,所以我们就应该想一些别的方法,。
分析:
比如,答案,一定是递减的,因为该答案所满足的条件肯定是越来越苛刻的,所以我们是不是可以想一些其他的特殊方法,来达到我们的目的,然后让我们摆脱gcd的束缚,来联想一下gcd的一些性质,比如gcd一定是这k个数中的最大公因子,这是定义。
我们可以先把这几个数的所有因子全枚举出来, 并统计他们所出现的个数。
这里我们可以知道,只有该因子出现的次数大于题目中的k时,因为每个因子在每个数中只会增加一次,这就说明这个因子至少在k个数中是因子, 所以我们可以从大到小枚举每个因子,看是否出现k次就可以了。
代码:
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm> using namespace std;
int data[], maxn, tot[];
int main() {
int n;
scanf("%d", &n);
for (int k = ; k <= n; k++) {
scanf("%d", &data[k]), maxn = max(maxn, data[k]);
for (int i = ; i * i <= data[k]; i++) {
if (i * i != data[k] && !(data[k] % i))
tot[i]++, tot[data[k] / i]++;
if (i * i == data[k])
tot[i]++;
}
}
for (int i = ; i <= n; i++) {
while (tot[maxn] < i)
maxn--;
printf ("%d\n", maxn);
}
}
洛谷P1414又是毕业季二题解的更多相关文章
- 洛谷-P1414 又是毕业季II -枚举因子
P1414 又是毕业季II:https://www.luogu.org/problemnew/show/P1414 题意: 给定一个长度为n的数列.要求输出n个数字,每个数字代表从给定数列中最合理地取 ...
- 洛谷P1414 又是毕业季 [数论]
题目传送门 又是毕业季 题目背景 “叮铃铃铃”,随着高考最后一科结考铃声的敲响,三年青春时光顿时凝固于此刻.毕业的欣喜怎敌那离别的不舍,憧憬着未来仍毋忘逝去的歌.1000多个日夜的欢笑和泪水,全凝聚在 ...
- 洛谷 P1414 又是毕业季II Label:None
题目背景 “叮铃铃铃”,随着高考最后一科结考铃声的敲响,三年青春时光顿时凝固于此刻.毕业的欣喜怎敌那离别的不舍,憧憬着未来仍毋忘逝去的歌.1000多个日夜的欢笑和泪水,全凝聚在毕业晚会上,相信,这一定 ...
- 【数论】洛谷P1414又是毕业季II
题目背景 "叮铃铃铃",随着高考最后一科结考铃声的敲响,三年青春时光顿时凝固于此刻.毕业的欣喜怎敌那离别的不舍,憧憬着未来仍毋忘逝去的歌.1000多个日夜的欢笑和泪水,全凝聚在毕业 ...
- 洛谷 P1414 又是毕业季II
题目链接 https://www.luogu.org/problemnew/show/P1414 题目背景 “叮铃铃铃”,随着高考最后一科结考铃声的敲响,三年青春时光顿时凝固于此刻.毕业的欣喜怎敌那离 ...
- 洛谷 - P1414 - 又是毕业季II - 因数
https://www.luogu.org/problemnew/show/P1414 以后这种gcd的还是尽可能往分解那里想一下. 先把每个数分解,他的所有因子都会cnt+1. 然后从最大的可能因子 ...
- 洛谷 P1414 又是毕业季II (多个数的最大公因数)
这道题其实不难,但是我想复杂了 我想的是把每个数质因数分解,然后每次就枚举每个质因数 来求最小公倍数. 然后想了想这样复杂度将会非常的大,肯定超时 然后看了题解发现不需要质因数分解,直接存因数的个数就 ...
- 洛谷P1414 又是毕业季II
题目背景 “叮铃铃铃”,随着高考最后一科结考铃声的敲响,三年青春时光顿时凝固于此刻.毕业的欣喜怎敌那离别的不舍,憧憬着未来仍毋忘逝去的歌.1000多个日夜的欢笑和泪水,全凝聚在毕业晚会上,相信,这一定 ...
- 洛谷 P1414 又是毕业季II(未完成)
题目背景 “叮铃铃铃”,随着高考最后一科结考铃声的敲响,三年青春时光顿时凝固于此刻.毕业的欣喜怎敌那离别的不舍,憧憬着未来仍毋忘逝去的歌.1000多个日夜的欢笑和泪水,全凝聚在毕业晚会上,相信,这一定 ...
随机推荐
- 【fetch跨域请求】cors
当使用fetch 发起跨域请求时,CORS(跨域资源共享Cross-origin resource sharing) 请求fetch const body = {name:"Good boy ...
- Linux—vim常用命令
vim常用命令: 1. 键入i进入编辑模式2. esc进入命令模式3. a,进入编辑模式3. b,光标移动到单词前,end,光标移动到行尾4. home光标移动到行首5. cc,删除当前行,并进入编辑 ...
- 448C - Painting Fence(分治)
题意:给出宽为1高为Ai的木板n条,排成一排,每次上色只能是连续的横或竖并且宽度为1,问最少刷多少次可以使这些木板都上上色 分析:刷的第一步要么是所有的都竖着涂完,要么是先横着把最矮的涂完,如果是第一 ...
- 福州大学软件工程1816 | W班 第10次作业[个人作业——软件产品案例分析]
作业链接 个人作业--软件产品案例分析 评分细则 本次个人项目分数由两部分组成(课堂得分(老师/助教占比60%,学生占比40%)满分40分+博客分满分60分) 课堂得分和博客得分表 评分统计图 千帆竞 ...
- Servlet 使用ServletConfig对象来配置Servlet
ServletContext和ServletConfig的关联 相同点: 1.都可以用来配置Servlet 2.都可以写在web.xml中. 区别点: 1.ServletContext对象,对于所有的 ...
- 解决scrapy报错:ModuleNotFoundError: No module named 'win32api'
ModuleNotFoundError: No module named 'win32api' 表示win32api未安装 解决办法: 下载对应python版本的win32api,并安装. 下载地址: ...
- Centos 6.x 升级到 7.x
Centos6.5跨越大版本升级到Centos7.4 - Linux学习与应用 - CSDN博客https://blog.csdn.net/whbttst/article/details/805348 ...
- bridge br0 docker 网络问题 Docker Container与Docker Host
Docker学习笔记:Docker 网络配置 - docker ppt - docker中文社区http://www.docker.org.cn/dockerppt/111.html Bridge t ...
- Oracle RMAN备份与还原注意事项
1 备份文件管理 如果要删除之前的备份,不要手动去目录下删除,应该在rman命令模式下使用删除命令,否则虽然在磁盘上把物理备份文件删除了,但是使用备份查看命令会一直看到已经删除的备份文件 list b ...
- 临时的ThisCall
// 获取当前定位 changeCity: function () { let that = this; that.locationClose(); Upj._changeCity().then((d ...