【LOJ#6072】苹果树(矩阵树定理,折半搜索,容斥)

题面

LOJ

题解

emmmm,这题似乎猫讲过一次。。。

显然先\(meet-in-the-middle\)搜索一下对于每个有用的苹果数量,满足权值小于\(lim\)的方案数

,那么只需要考虑它们构成生成树的方案数就好了。

显然有用的可以和所有的有用的或者是坏的连边,好的但不有用的只能和坏的连边,而坏的随意。

但是这样子算出来的结果是至多,因此还需要额外容斥一下计算生成树的个数。

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
#define MAX 50
#define MOD 1000000007
void add(int &x,int y){x+=y;if(x>=MOD)x-=MOD;}
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int n,limit,m,c[MAX];
struct Node{int S,d;}S1[1050000],S2[1050000];
bool operator<(Node a,Node b){return a.S<b.S;}
int top1,top2;
void dfs1(int x,int S,int D)
{
if(S>limit)return;
if(x==m+1){S1[++top1]=(Node){S,D};return;}
dfs1(x+1,S,D);
if(c[x]>-1)dfs1(x+1,S+c[x],D+1);
}
void dfs2(int x,int S,int D)
{
if(S>limit)return;
if(x==n+1){S2[++top2]=(Node){S,D};return;}
dfs2(x+1,S,D);
if(c[x]>-1)dfs2(x+1,S+c[x],D+1);
}
int Cnt[MAX],cc[MAX];
int Sum[MAX],tot;
int a[MAX][MAX],C[MAX][MAX];
int fpow(int a,int b)
{
int s=1;
while(b){if(b&1)s=1ll*s*a%MOD;a=1ll*a*a%MOD;b>>=1;}
return s;
}
void link(int x,int y){++a[x][x],++a[y][y];--a[x][y],--a[y][x];}
int Matrix_Tree(int k)
{
for(int i=1;i<=n;++i)
for(int j=1;j<=n;++j)a[i][j]=0;
for(int i=1;i<=n;++i)
for(int j=i+1;j<=n;++j)
if(i<=k){if(j<=k||j>tot)link(i,j);}
else if(i>tot)link(i,j);
else if(j>tot)link(i,j);
for(int i=1;i<=n;++i)
for(int j=1;j<=n;++j)
a[i][j]=(a[i][j]+MOD)%MOD;
int ans=1;
for(int i=1;i<n;++i)
{
for(int j=i+1;j<n;++j)
{
int t=1ll*a[j][i]*fpow(a[i][i],MOD-2)%MOD;
for(int k=i;k<n;++k)a[j][k]=(a[j][k]+MOD-1ll*t*a[i][k]%MOD)%MOD;
}
ans=1ll*ans*a[i][i]%MOD;
}
return ans;
}
int main()
{
n=read();limit=read();m=(n+1)/2;
for(int i=1;i<=n;++i)c[i]=read();
for(int i=1;i<=n;++i)tot+=(c[i]!=-1);
dfs1(1,0,0);dfs2(m+1,0,0);
sort(&S1[1],&S1[top1+1]);sort(&S2[1],&S2[top2+1]);
for(int i=top1,j=1;i;--i)
{
while(j<=top2&&S1[i].S+S2[j].S<=limit)cc[S2[j].d]+=1,++j;
for(int k=0;k<=n;++k)add(Cnt[S1[i].d+k],cc[k]);
}
for(int i=0;i<=n;++i)C[i][0]=1;
for(int i=1;i<=n;++i)
for(int j=1;j<=i;++j)
C[i][j]=(C[i-1][j]+C[i-1][j-1])%MOD;
for(int i=0;i<=tot;++i)Sum[i]=Matrix_Tree(i);
for(int i=1;i<=tot;++i)
for(int j=0;j<i;++j)
Sum[i]=(Sum[i]+MOD-1ll*C[i][j]*Sum[j]%MOD)%MOD;
int ans=0;
for(int i=0;i<=tot;++i)add(ans,1ll*Cnt[i]*Sum[i]%MOD);
printf("%d\n",ans);
return 0;
}

【LOJ#6072】苹果树(矩阵树定理,折半搜索,容斥)的更多相关文章

  1. loj#6072 苹果树(折半搜索,矩阵树定理,容斥)

    loj#6072 苹果树(折半搜索,矩阵树定理,容斥) loj 题解时间 $ n \le 40 $ . 无比精确的数字. 很明显只要一个方案不超过 $ limits $ ,之后的计算就跟选哪个没关系了 ...

  2. [51Nod1446] 限制价值树 (容斥+MT定理+折半搜索)

    传送门 Description 有N个点(N<=40)标记为0,1,2,...N-1,每个点i有个价值val[i],如果val[i]=-1那么这个点被定义为bad,否则如果val[i] > ...

  3. LOJ #6044 -「雅礼集训 2017 Day8」共(矩阵树定理+手推行列式)

    题面传送门 一道代码让你觉得它是道给初学者做的题,然鹅我竟没想到? 首先考虑做一步转化,我们考虑将整棵树按深度奇偶性转化为一张二分图,即将深度为奇数的点视作二分图的左部,深度为偶数的点视作二分图的右部 ...

  4. [专题总结]矩阵树定理Matrix_Tree及题目&题解

    专题做完了还是要说两句留下什么东西的. 矩阵树定理通俗点讲就是: 建立矩阵A[i][j]=edge(i,j),(i!=j).即矩阵这一项的系数是两点间直接相连的边数. 而A[i][i]=deg(i). ...

  5. 4.9 省选模拟赛 生成树求和 变元矩阵树定理 生成函数 iDFT 插值法

    有同学在loj上找到了加强版 所以这道题是可以交的.LINK:生成树求和 加强版 对于30分 爆搜 可实际上我爆搜只过了25分 有同学使用按秩合并并茶几的及时剪枝通过了30分. const int M ...

  6. loj6271 「长乐集训 2017 Day10」生成树求和 加强版(矩阵树定理,循环卷积)

    loj6271 「长乐集训 2017 Day10」生成树求和 加强版(矩阵树定理,循环卷积) loj 题解时间 首先想到先分开三进制下每一位,然后每一位分别求结果为0,1,2的树的个数. 然后考虑矩阵 ...

  7. [spoj104][Highways] (生成树计数+矩阵树定理+高斯消元)

    In some countries building highways takes a lot of time... Maybe that's because there are many possi ...

  8. BZOJ 4766: 文艺计算姬 [矩阵树定理 快速乘]

    传送门 题意: 给定一个一边点数为n,另一边点数为m,共有n*m条边的带标号完全二分图$K_{n,m}$ 求生成树个数 1 <= n,m,p <= 10^18 显然不能暴力上矩阵树定理 看 ...

  9. bzoj 4596 [Shoi2016]黑暗前的幻想乡 矩阵树定理+容斥

    4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 559  Solved: 325[Submit][Sta ...

随机推荐

  1. iOS UICollectionView 在滚动时停在某个item位置上

    方法一:实现UIScrollView的代理,然后实现下面这个方法 #pragma mark - UIScrollViewDelegate//预计出大概位置,经过精确定位获得准备位置- (void)sc ...

  2. html总结:文本框填满表格

    <style> input { width: 100%; }</style>

  3. shell脚本--eval执行shell命令

    和其他语言的eval功能差不多,都是将一个保存执行语句的变量作为参数,eval会让变量所保存的语句执行. 下面是一个执行表单提交的命令:注意,这里只是示例,应用中不要这么使用,很危险 #!/bin/b ...

  4. 抓包工具之fiddler

    fiddler手机抓包的原理与抓pc上的web数据一样,都是把fiddler当作代理,网络请求走fiddler,fiddler从中拦截数据,由于fiddler充当中间人的角色,所以可以解密https ...

  5. 城市联动 - 自动生成SQL语句

    字段比较简单/  如果有需要可以自己定制字段和排序/ 一共二级城市联动, 本人业务需要, 所以就两层, 网上关于三层的挺多, 有需要可以借鉴/ 废话不多说, 先看效果图, 代码在下面 <?php ...

  6. IdentityServer4【Introduction】之包和项目构建

    包和项目构建 IdentityServer包含了以下的nuget包: IdentityServer4 nuget | github 这个包包含了IdentityServer核心的组成部分,有对象模型, ...

  7. IntelliJ IDEA使用教程(非常全面)

    这个编辑器我就不再多做介绍了.直接开始新建maven hello world 的Java web项目啦 你电脑上得有jdk1.7,或者1.8,然后就是maven3.x吧,再有就是tomcat7以上吧. ...

  8. 在Laravel中使用数据库事务以及捕获事务失败后的异常

    Description 在Laravel中要想在数据库事务中运行一组操作,则可以在 DB facade 中使用 transaction 方法.如果在事务的闭包内抛出异常,事务将会被自动还原.如果闭包运 ...

  9. Pyspark spark-submit 集群提交任务以及引入虚拟环境依赖包攻略

    网上提交 scala spark 任务的攻略非常多,官方文档其实也非常详细仔细的介绍了 spark-submit 的用法.但是对于 python 的提交提及得非常少,能查阅到的资料非常少导致是有非常多 ...

  10. mysql常用运算符

    一.算数运算符 + 加法 - 减法 * 乘法 / 除法 % 返回余数 二.比较运算符 = 等于 <>或!= 不等于 <=> 等于(这里是安全的等于 例如: select nul ...