题目描述

  问有多少个满足以下要求的\(k\)进制数:

   1.每个数字出现的次数不超过\(n\)

   2.\(0\)没有出现过

   3.若\(g_{i,j}=0\),则\(i\)不能出现恰好\(j\)次。

  两次询问之间会修改\(g\)中一个位置的值(\(0\)变\(1\)或\(1\)变\(0\))。

  输出所有询问的答案的和。

  \(3\leq k\leq 10,n\leq 14000,m\leq 20\)

  模数\(p=786433\),原根\(g=10\)

题解

  假设第\(i\)个数用了\(c_i\)个,答案为

\[\frac{(\sum c_i)!}{\prod c_i!}
\]

  构造多项式

\[f_i(x)=\sum_{j=0}^n\frac{g_{i,j}}{j!}x^j
\]

  把这\(k-1\)个多项式乘起来后,第\(i\)项乘以\(i!\)的和就是答案。

  因为求的是答案的和,所以可以在点值表达的形式下累加答案,最后IDFT回来。

​ 怎么求没修改前的答案?

  直接DFT

  怎么求修改的贡献?

  观察NTT的公式:

\[y_k=\sum_{j=0}^{n-1}a_j{(g^\frac{p-1}{n})}^{kj}
\]

  对于一个单点修改操作,可以看成在某个多项式上加上一个只有一项系数不为\(0\)的多项式。这个多项式DFT后就是一个等比数列,直接加到原多项式上就完了。

  对于所有多项式的乘积:如果所有多项式的每一项都非\(0\),就直接乘以逆元。现在有\(0\),就记录每一项\(0\)的个数和非\(0\)的乘积。

  时间复杂度:\(O(nk^2\log (nk)+mnk)\)

代码

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<utility>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
const ll p=786433;
const ll g=10;
ll inv[1000010];
ll fac[1000010];
ll ifac[1000010];
ll pg[1000010];
ll fp(ll a,ll b)
{
ll s=1;
while(b)
{
if(b&1)
s=s*a%p;
a=a*a%p;
b>>=1;
}
return s;
}
namespace ntt
{
int n;
ll w1[150000];
ll w2[150000];
int rev[150000];
void init(int x)
{
n=1;
while(n<=x)
n<<=1;
int i;
for(i=1;i<=n;i<<=1)
{
w1[i]=fp(g,(p-1)/i);
w2[i]=inv[w1[i]];
}
rev[0]=0;
for(i=1;i<n;i++)
rev[i]=(rev[i>>1]>>1)|(i&1?n>>1:0);
}
void ntt(ll *a,int t)
{
int i,j,k;
ll u,v,w,wn;
for(i=0;i<=n-1;i++)
if(rev[i]<i)
swap(a[i],a[rev[i]]);
for(i=2;i<=n;i<<=1)
{
wn=(t==1?w1[i]:w2[i]);
for(j=0;j<n;j+=i)
{
w=1;
for(k=j;k<j+i/2;k++)
{
u=a[k];
v=a[k+i/2]*w%p;
a[k]=(u+v)%p;
a[k+i/2]=(u-v)%p;
w=w*wn%p;
}
}
}
if(t==-1)
for(i=0;i<n;i++)
a[i]=a[i]*inv[n]%p;
}
}
int &nn=ntt::n;
char s[14010];
int c[12][14010];
void init()
{
int i;
inv[0]=inv[1]=1;
for(i=2;i<=p-1;i++)
inv[i]=(-(p/i)*inv[p%i]%p+p)%p;
fac[0]=ifac[0]=1;
for(i=1;i<=p-1;i++)
{
fac[i]=fac[i-1]*i%p;
ifac[i]=ifac[i-1]*inv[i]%p;
}
}
ll ans;
ll d[12][150000];
ll f[150000];
ll f2[150000];
ll a[150000];
int k,n,m;
int main()
{
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
init();
int i,j;
scanf("%d%d%d",&k,&n,&m);
ntt::init((k-1)*n);
pg[0]=1;
for(i=1;i<=p-2;i++)
pg[i]=pg[i-1]*g%p;
for(i=1;i<=k-1;i++)
{
scanf("%s",s);
for(j=0;j<=n;j++)
c[i][j]=s[j]-'0';
}
ans=0;
for(i=0;i<nn;i++)
f[i]=1;
for(i=1;i<=k-1;i++)
{
ll *u=d[i];
for(j=0;j<nn;j++)
u[j]=0;
for(j=0;j<=n;j++)
u[j]=c[i][j]*ifac[j]%p;
ntt::ntt(u,1);
for(j=0;j<nn;j++)
{
if(u[j]<0)
u[j]+=p;
if(u[j])
f[j]=f[j]*u[j]%p;
else
f2[j]++;
}
}
for(i=0;i<nn;i++)
if(!f2[i])
a[i]=(a[i]+f[i])%p;
int x,y;
int t;
for(t=1;t<=m;t++)
{
scanf("%d%d",&x,&y);
c[x][y]^=1;
for(i=0;i<nn;i++)
if(d[x][i])
f[i]=f[i]*inv[d[x][i]]%p;
else
f2[i]--;
ll s1=pg[((p-1)/nn*y)%(p-1)],s2=ifac[y];
if(!c[x][y])
s2=p-s2;
for(i=0;i<nn;i++)
{
d[x][i]+=s2;
if(d[x][i]>=p)
d[x][i]-=p;
s2=s2*s1%p;
}
for(i=0;i<nn;i++)
{
if(d[x][i])
f[i]=f[i]*d[x][i]%p;
else
f2[i]++;
if(!f2[i])
a[i]=(a[i]+f[i])%p;
}
}
ntt::ntt(a,-1);
for(i=1;i<nn;i++)
ans=(ans+a[i]*fac[i])%p;
ans=(ans%p+p)%p;
printf("%lld\n",ans);
return 0;
}

【XSY2535】整数 NTT的更多相关文章

  1. [学习笔记&教程] 信号, 集合, 多项式, 以及各种卷积性变换 (FFT,NTT,FWT,FMT)

    目录 信号, 集合, 多项式, 以及卷积性变换 卷积 卷积性变换 傅里叶变换与信号 引入: 信号分析 变换的基础: 复数 傅里叶变换 离散傅里叶变换 FFT 与多项式 \(n\) 次单位复根 消去引理 ...

  2. Tsinsen A1493 城市规划(DP + CDQ分治 + NTT)

    题目 Source http://www.tsinsen.com/A1493 Description 刚刚解决完电力网络的问题, 阿狸又被领导的任务给难住了. 刚才说过, 阿狸的国家有n个城市, 现在 ...

  3. NTT

    1 问题描述FFT问题解决的是复数域上的卷积.如果现在的问题是这样:给出两个整数数列$Ai,Bj,0\leq i\leq n-1,0\leq j\leq m-1$,以及素数$P$,计算新数列$Ci=( ...

  4. 卷积FFT、NTT、FWT

    先简短几句话说说FFT.... 多项式可用系数和点值表示,n个点可确定一个次数小于n的多项式. 多项式乘积为 f(x)*g(x),显然若已知f(x), g(x)的点值,O(n)可求得多项式乘积的点值. ...

  5. FFT\NTT总结

    学了好久,终于基本弄明白了 推荐两个博客: 戳我 戳我 再推荐几本书: <ACM/ICPC算法基础训练教程> <组合数学>(清华大学出版社) <高中数学选修> 预备 ...

  6. 快速傅里叶变换FFT& 数论变换NTT

    相关知识 时间域上的函数f(t)经过傅里叶变换(Fourier Transform)变成频率域上的F(w),也就是用一些不同频率正弦曲线的加 权叠加得到时间域上的信号. \[ F(\omega)=\m ...

  7. 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/常用套路【入门】

    原文链接https://www.cnblogs.com/zhouzhendong/p/Fast-Fourier-Transform.html 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/ ...

  8. 【2019雅礼集训】【CF 960G】【第一类斯特林数】【NTT&多项式】permutation

    目录 题意 输入格式 输出格式 思路 代码 题意 找有多少个长度为n的排列,使得从左往右数,有a个元素比之前的所有数字都大,从右往左数,有b个元素比之后的所有数字都大. n<=2*10^5,a, ...

  9. 快速数论变换(NTT)小结

    NTT 在FFT中,我们需要用到复数,复数虽然很神奇,但是它也有自己的局限性--需要用double类型计算,精度太低 那有没有什么东西能够代替复数且解决精度问题呢? 这个东西,叫原根 原根 阶 若\( ...

随机推荐

  1. Flask入门的第一个项目进阶版

    前言: 此次版本增加[一对多]数据库关系和动态路由设置. 一.数据库设计 environments表与variable1表的关系为:一对多.variable1.env_id设置为外键,与environ ...

  2. vue及Eelement使用过程中遇到的一些问题

    在做项目的过程中,目前主要遇到了以下几个问题: 一.样式问题 1.样式中使用scoped的问题: 主要表现在从一个页面跳到另一个页面时,第二个页面的样式不能正确显示,通过刷新才能恢复页面的预定样式. ...

  3. H5 标签选择器

    08-标签选择器 我是段落 我是段落 我是段落 我是段落 我是段落 我是标题 <!DOCTYPE html> <html lang="en"> <he ...

  4. 杭电 1061 Rightmost Digit计算N^N次方的最后一位

    Problem Description Given a positive integer N, you should output the most right digit of N^N. Input ...

  5. Dapper.NET

    关于Dapper.NET的相关论述   年少时,为何不为自己的梦想去拼搏一次呢?纵使头破血流,也不悔有那年少轻狂.感慨很多,最近事情也很多,博客也很少更新了,毕竟每个人都需要为自己的生活去努力. 最近 ...

  6. js基础语法之函数

    普通函数 function foo(a, b){ return a + b; } foo(10, 20) >>> 30 匿名函数 var f = function(){console ...

  7. stark组件配置,二层URL

    1.django的admin配置 2 stark组件开发 3.2层url分发 4.小结 1.django的admin配置 model.py from django.db import models # ...

  8. marMariaDB & MYSQL flexviews

    Using Flexviews - part one, introduction to materialized views - Percona Database Performance Bloght ...

  9. IdentityServer4【Topic】之定义客户端

    Defining Clients 定义客户端 客户端表示哪些可以从你的IdentityServer拿到token的应用. 除了一些可能会变化的细节之外,通常情况下你需要为一个客户端定义如下通用的设置: ...

  10. [转帖]cmd批处理常用符号详解

    cmd批处理常用符号详解 https://www.jb51.net/article/32866.htm 很多符号 还是不清楚的.. 批处理能够极大的提高 工作效率 需要加强深入学习.   1.@一般在 ...