卢卡斯定理

  求\(C_m^n~mod~p\)

  设\(m={a_0}^{p_0}+{a_1}^{p_1}+\cdots+{a_k}^{p_k},n={b_0}^{p_0}+{b_1}^{p_1}+\cdots+{b_k}^{p_k}\)

  则\(C_m^n\equiv\prod{C_{a_i}^{b_i}}(mod~p)\)

扩展卢卡斯定理

  好像这也不是什么定理,只是一个计算方法

  计算\(C_m^n~mod~p\),其中\(p={p_1}^{q_1}\times{p_2}^{q_2}\times\cdots{p_k}^{q_k}\)时,我们可以先求出\(C_m^n~mod~{p_i}^{q_i}\),然后用CRT合并。

  那么怎么计算\(C_m^n~mod~{p_i}^{q_i}\)呢?

  \(C_m^n=\frac{m!}{n!(m-n)!}\),我们只需要算出\(m!,{n!}^{-1},{(m-n)!}^{-1}\),然后乘在一起。

  zjt大爷:\(n!\)可能在模\({p_i}^{q_i}\)的意义下没有逆元啊,那这就是错的了啊

  其实这里求得不是逆元(可能没有逆元),求出来的是\(a\times {p_i}^b(gcd(a,p)=1)\),前面的\(a\)用逆元,后面的次数加加减减一下就好了

  问题转换成求\(n!~mod~p^q\)

  例如\(n=19,p=3,q=2\):

\[
\begin{align}
&19!\\
=&1\times2\times3\times\cdots\times19\\
=&(1\times2\times4\times5\times7\times8\cdots\times16\times17\times19)\times(3\times6\times9\times12\times15\times18)\\
=&(1\times2\times4\times5\times7\times8\cdots\times16\times17)\times19\times3^6\times(1\times2\times3\times4\times5\times6)\\
=&{(1\times2\times4\times5\times7\times8)}^2\times19\times3^6\times(1\times2\times3\times4\times5\times6)
\end{align}
\]

  上面这个式子分为四部分:

  第一部分:\({(1\times2\times4\times5\times7\times8)}^2\)。这部分的数不超过\(p^q\)个,可以暴力算

  第二部分:\(19\)。这部分的数不超过\(p^q\)个,可以暴力算

  第三部分:\(3^6\)。这个在最后处理时求出\(m!,n!,(m-n)!\)分别有多少个\(p\)(设为\(x,y,z\)),则答案要乘上\(p^{x-y-z}\)

  第四部分:\(1\times2\times3\times4\times5\times6\)。这个是\(\lfloor\frac{n}{p}\rfloor!\),可以递归处理

卢卡斯定理&扩展卢卡斯定理的更多相关文章

  1. bzoj2142 礼物——扩展卢卡斯定理

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2142 前几天学了扩展卢卡斯定理,今天来磕模板! 这道题式子挺好推的(连我都自己推出来了) , ...

  2. 【知识总结】扩展卢卡斯定理(exLucas)

    扩展卢卡斯定理用于求如下式子(其中\(p\)不一定是质数): \[C_n^m\ mod\ p\] 我们将这个问题由总体到局部地分为三个层次解决. 层次一:原问题 首先对\(p\)进行质因数分解: \[ ...

  3. LG4720 【模板】扩展卢卡斯定理

    扩展卢卡斯定理 求 \(C_n^m \bmod{p}\),其中 \(C\) 为组合数. \(1≤m≤n≤10^{18},2≤p≤1000000\) ,不保证 \(p\) 是质数. Fading的题解 ...

  4. 【学习笔记】扩展卢卡斯定理 exLucas

    引子 求 \[C_n^m\ \text{mod}\ p \] 不保证 \(p\) 是质数. 正文 对于传统的 Lucas 定理,必须要求 \(p\) 是质数才行.若 \(p\) 不一定是质数,则需要扩 ...

  5. 洛谷P2480 [SDOI2010]古代猪文(费马小定理,卢卡斯定理,中国剩余定理,线性筛)

    洛谷题目传送门 蒟蒻惊叹于一道小小的数论题竟能涉及这么多知识点!不过,掌握了这些知识点,拿下这道题也并非难事. 题意一行就能写下来: 给定\(N,G\),求\(G^{\sum \limits _{d| ...

  6. [学习笔记]扩展LUCAS定理

    可以先做这个题[SDOI2010]古代猪文 此算法和LUCAS定理没有半毛钱关系. [模板]扩展卢卡斯 不保证P是质数. $C_n^m=\frac{n!}{m!(n-m)!}$ 麻烦的是分母. 如果互 ...

  7. 洛谷 P4720 【模板】扩展 / 卢卡斯 模板题

    扩展卢卡斯定理 : https://www.luogu.org/problemnew/show/P4720 卢卡斯定理:https://www.luogu.org/problemnew/show/P3 ...

  8. 【luoguP4720】【模板】扩展卢卡斯

    快速阶乘与(扩展)卢卡斯定理 \(p\)为质数时 考虑 \(n!~mod~p\) 的性质 当\(n>>p\)时,不妨将\(n!\)中的因子\(p\)提出来 \(n!\) 可以写成 \(a* ...

  9. [洛谷P4720] [模板] 扩展卢卡斯

    题目传送门 求组合数的时候,如果模数p是质数,可以用卢卡斯定理解决. 但是卢卡斯定理仅仅适用于p是质数的情况. 当p不是质数的时候,我们就需要用扩展卢卡斯求解. 实际上,扩展卢卡斯=快速幂+快速乘+e ...

随机推荐

  1. MySQL 数据库 初识

    ---------------------------------------------确定目标,认准目标,前进,克服困难,前进,克服困难,前进克服困难,前进. # # -------------- ...

  2. SNMP 获取交换机端口相关信息

    原文地址:https://blog.csdn.net/ysdaniel/article/details/37927541 我们想用snmpwalk查看网络设备的端口,MIB库中相关定义的信息如下: [ ...

  3. c语言中字符串数组初始化的一点总结&& c++访问控制的三种方式

    char *c[]={"ONE","TWO","THREE","FOUR"}; // c语言中定义了一个字符串数组(也称 ...

  4. react虚拟dom diff算法

    react虚拟dom:依据diff算法 前端:更新状态.更新视图:所以前端页面的性能问题主要是由Dom操作引起的,解放Dom操作复杂性 刻不容缓 因为:Dom渲染慢,而JS解析编译相对非常非常非常快! ...

  5. c++入门之类继承初步

    继承是面向对象的一种很重要的特性,先来复习基类的基本知识: 先上一段代码: # ifndef TABLE00_H # define TABLE00_H # include "string&q ...

  6. javascript与php与python的函数写法区别与联系

    1.javascript函数写法种类: (一).第一种 function test(param){ return 111; } (二).第二种 var test = function(param){ ...

  7. JoinPoint

    “JoinPoint对象封装了SpringAop中切面方法的信息,在切面方法中添加JoinPoint参数,就可以获取到封装了该方法信息的JoinPoint对象. ” JoinPoint适用于注解和Sc ...

  8. debian下 Hadoop 1.0.4 集群配置及运行WordCount

    说明:我用的是压缩包安装,不是安装包 官网安装说明:http://hadoop.apache.org/docs/r1.1.2/cluster_setup.html,繁冗,看的眼花...大部分人应该都不 ...

  9. FAIL - Deploy Upload Failed, Exception: [org.apache.tomcat.util.http.fileupload.FileUploadBase$SizeLimitExceededException: the request was rejected because its size (112503036) exceeds the configured

    Message:  FAIL - Deploy Upload Failed, Exception: [org.apache.tomcat.util.http.fileupload.FileUpload ...

  10. PHP Lumen Call to a member function connection() on null 报错

    (1/1) Error Call to a member function connection() on nullin Model.php line 1201at Model::resolveCon ...