gcd和exgcd和lcm
Gcd
▪ 欧几里得算法又称辗转相除法,用于计算两个正整数 a, b 的最大公约数。
▪ 计算公式为 gcd(a,b) = gcd(b,a mod b)。
▪ 公式无需证明,记忆即可。
▪ 如果要求多个数的最大公约数。易证,每次取出两个数再放回去,不会影响答案正
确性。
▪ 比如 a,b,c 三个数,答案就是 gcd(gcd(a,b),c)
int gcd(int a, int b)
{
if (!b) return a;
return gcd(b, a % b);
}
扩展 Gcd
▪ 求出 ax + by = gcd(a,b)的一组可行解。
void exgcd(int a,int b,int& d,int& x,int& y)
{
if(!b)
{
d=a;
x=;
y=;
}
else
{
exgcd(b,a%b,d,y,x);
y-=x*(a/b);
}
}
LCM 最小公倍数
▪ lcm(m,n) = (m * n) / gcd(m,n)
▪ 我们使用刚刚的欧几里得算法求出 gcd 后,即可求得 lcm。
▪ 如果要求解多个数的最小公倍数,则做法与 gcd 类似。
▪ 比如有 a,b,c 三个数,答案就是 lcm(lcm(a,b),c)
gcd和exgcd和lcm的更多相关文章
- gcd以及exgcd入门讲解
gcd就是最大公约数,gcd(x, y)一般用(x, y)表示.与此相对的是lcm,最小公倍数,lcm(x, y)一般用[x, y]表示. 人人都知道:lcm(x, y) = x * y / gcd( ...
- Algorithm: GCD、EXGCD、Inverse Element
数论基础 数论是纯数学的一个研究分支,主要研究整数的性质.初等数论包括整除理论.同余理论.连分数理论.这一篇主要记录的是同余相关的基础知识. 取模 取模是一种运算,本质就是带余除法,运算结果就是余数. ...
- Summary: gcd最大公约数、lcm最小公倍数算法
欧几里德算法 欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数.其计算原理依赖于下面的定理: 定理:gcd(a,b) = gcd(b,a mod b) 证明:a可以表示成a = kb + ...
- 从BZOJ2242看数论基础算法:快速幂,gcd,exgcd,BSGS
LINK 其实就是三个板子 1.快速幂 快速幂,通过把指数转化成二进制位来优化幂运算,基础知识 2.gcd和exgcd gcd就是所谓的辗转相除法,在这里用取模的形式体现出来 \(gcd(a,b)\) ...
- 求gcd(最大公因数),lcm(最小公倍数)模板
gcd(最大公因数),lcm(最小公倍数) #include<iostream> using namespace std; int gcd(int a,int b)//辗转相除法(欧几里德 ...
- gcd与exgcd
gcd 辗转相除法求gcd证明 \(gcd(a, b) == gcd(b, a\%b)\) 证明: 设: \(d\)为\(a\)与\(b\)的一个公约数, 则有\(d|b\) \(d|a\) 设: \ ...
- 【板子】gcd、exgcd、乘法逆元、快速幂、快速乘、筛素数、快速求逆元、组合数
1.gcd int gcd(int a,int b){ return b?gcd(b,a%b):a; } 2.扩展gcd )extend great common divisor ll exgcd(l ...
- gcd,最大公约数,lcm,最小公倍数
int gcd(int a,int b){ ?a:gcd(b,a%b); } 关于lcm,若写成a*b/gcd(a,b) ,a*b可能会溢出! int lcm(int a,int b){ return ...
- 关于gcd和exgcd的一点心得,保证看不懂(滑稽)
网上看了半天……还是没把欧几里得算法和扩展欧几里得算法给弄明白…… 然后想了想自己写一篇文章好了…… 参考文献:https://www.cnblogs.com/hadilo/p/5914302.htm ...
随机推荐
- 洛谷P2866 [USACO06NOV]糟糕的一天Bad Hair Day(单调栈)
题目描述 Some of Farmer John's N cows (1 ≤ N ≤ 80,000) are having a bad hair day! Since each cow is self ...
- 使用Gson将对象类转成Json对象时出现\u003d的问题
Gson将对象转成Json对象的方法 Gson gson=new Gson(); String json=gson.toJson(Student.class); 这种情况,如果Student属性中的某 ...
- H5+混合移动app应用开发——app升级
当我们的app开发完成之后,无可避免的以后会进行产品升级,那么我们希望在客户的手机上让app进行自动升级,可以分为自动升级和手动升级. 自动升级:一般在客户app第一次打开首页的时候. 手动升级:在a ...
- L2-024. 部落
在一个社区里,每个人都有自己的小圈子,还可能同时属于很多不同的朋友圈.我们认为朋友的朋友都算在一个部落里,于是要请你统计一下,在一个给定社区中,到底有多少个互不相交的部落?并且检查任意两个人是否属于同 ...
- VMware虚拟机安装CentOS系统图文教程
上一篇:VMware虚拟机安装教程详解图文 上一篇文章给大家介绍了虚拟机的安装,本文为大家详细介绍一下如何在虚拟机安装CentOS系统: 一:VMware虚拟机创建: 1:打开 ...
- springmvc复习笔记----Restful 风格,PathVariable获取 Url实例
结构 包与之前相同 <?xml version="1.0" encoding="UTF-8"?> <web-app xmlns:xsi=&qu ...
- spring mvc 中 controller 路径配置
下图中,由于红色部分(value="/")的存在,导致 host:port/项目/dimlist 无法被映射到dimList方法,解决办法是将其去掉. package cn.bgo ...
- Lua table笔记
记录我在使用lua的过程中的一些笔记 默认key为数字递增 local tb={"A",[3]="C","B"} 这个tb通过下标1,2,3 ...
- 在Lua中提示UnityEngine.dll的方法
我的环境 安装最新的 EmmyLua-1.2.1及以上版本 IDEA 2017.1.2 及以上版本 关于EmmlyLua的介绍可查看我之前的文章:Lua代码提示和方法跳转 说明:本文方法摘自 Emmy ...
- python3 requests + BeautifulSoup 爬取阳光网投诉贴详情实例代码
用到了requests.BeautifulSoup.urllib等,具体代码如下. # -*- coding: utf-8 -*- """ Created on Sat ...