Time Limit: 1 Sec  Memory Limit: 128 MB
Submit: 1215  Solved: 768
[Submit][Status][Discuss]

Description

数列
提交文件:sequence.pas/c/cpp
输入文件:sequence.in
输出文件:sequence.out
问题描述:
把一个正整数分成一列连续的正整数之和。这个数列必须包含至少两个正整数。你需要求出这个数列的最小长度。如果这个数列不存在则输出-1。
输入格式:
每行包含一个正整数n。
每个文件包含多行,读入直到文件结束。
输出格式:
对于每个n,输出一行,为这个数列的最小长度。
 

第一行是两个整数N和S,其中N是树的节点数。

第二行是N个正整数,第i个整数表示节点i的正整数。

接下来的N-1行每行是2个整数x和y,表示y是x的儿子。

输出格式:

输出路径节点总和为S的路径数量。

输入样例:

输出样例:

3 3

1 2 3

1 2

1 3

2

数据范围:

对于30%数据,N≤100;

对于60%数据,N≤1000;

对于100%数据,N≤100000,所有权值以及S都不超过1000。

数据范围:
对于所有数据,n≤263

这个是JLOI2012的T1,发出来仅为了试题完整

=============================================================================================

在这个问题中,给定一个值S和一棵树。在树的每个节点有一个正整数,问有多少条路径的节点总和达到S。路径中节点的深度必须是升序的。假设节点1是根节点,根的深度是0,它的儿子节点的深度为1。路径不必一定从根节点开始。

Input

第一行是两个整数N和S,其中N是树的节点数。

第二行是N个正整数,第i个整数表示节点i的正整数。

接下来的N-1行每行是2个整数x和y,表示y是x的儿子。

Output

输出路径节点总和为S的路径数量。

Sample Input

3 3

1 2 3

1 2

1 3

Sample Output

2

HINT

对于100%数据,N≤100000,所有权值以及S都不超过1000。

Source

刚开始以为是点分治,但是这道题目明确说明所有的路径都是一条链

然后来一遍树上前缀和就行了!

注意不要忘了删除

#include<cstdio>
#include<set>
#include<algorithm>
#include<cstring>
#define getchar() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<23,stdin),p1==p2)?EOF:*p1++)
char buf[<<],*p1=buf,*p2=buf;
using namespace std;
const int MAXN=1e6+;
inline int read()
{
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
int N,S;
int val[MAXN],sum[MAXN],ans=;
set<int>s;
struct node
{
int u,v,nxt;
}edge[MAXN];
int head[MAXN],num=;
inline void AddEdge(int x,int y)
{
edge[num].u=x;
edge[num].v=y;
edge[num].nxt=head[x];
head[x]=num++;
}
int dfs(int now)
{
s.insert(sum[now]);
if(s.find(sum[now]-S)!=s.end()) ans++;
for(int i=head[now];i!=-;i=edge[i].nxt)
{
sum[edge[i].v]=sum[now]+val[edge[i].v];
dfs(edge[i].v);
}
s.erase(s.find(sum[now]));
}
int main()
{
#ifdef WIN32
freopen("a.in","r",stdin);
#endif
N=read(),S=read();
memset(head,-,sizeof(head));
for(int i=;i<=N;i++) val[i]=read();
for(int i=;i<=N-;i++)
{
int x=read(),y=read();
AddEdge(x,y);
}
sum[]=val[];
//s.insert(0);
dfs();
printf("%d",ans);
return ;
}

BZOJ2783: [JLOI2012]树(树上前缀和+set)的更多相关文章

  1. [BZOJ2783/JLOI2012]树 树上倍增

    Problem 树 题目大意 给出一棵树,求这个树上的路径的数量,要求路径上的点权和等于s且路径的上每个点深度不同. Solution 这个题目可以用不少方法做. 首先,路径上每个节点的深度不同决定了 ...

  2. [bzoj2783][JLOI2012]树_树的遍历

    树 bzoj2783 JLOI2012 题目大意:给定一棵n个点的树.求满足条件的路径条数.说一个路径是满足条件的,当且仅当这条路径上每个节点深度依次递增且点权和为S. 注释:$1\le n\le 1 ...

  3. BZOJ2783: [JLOI2012]树 dfs+set

    2783: [JLOI2012]树 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 588  Solved: 347 Description 数列 提交文 ...

  4. 【bzoj2783】[JLOI2012]树 树上倍增

    题目描述 在这个问题中,给定一个值S和一棵树.在树的每个节点有一个正整数,问有多少条路径的节点总和达到S.路径中节点的深度必须是升序的.节点1是根节点,根的深度是0,它的儿子节点的深度为1.路径不必一 ...

  5. BZOJ2783: [JLOI2012]树

    Description 数列 提交文件:sequence.pas/c/cpp 输入文件:sequence.in 输出文件:sequence.out 问题描述: 把一个正整数分成一列连续的正整数之和.这 ...

  6. 【dfs】【哈希表】bzoj2783 [JLOI2012]树

    因为所有点权都是正的,所以对每个结点u来说,每条从根到它的路径上只有最多一个结点v符合d(u,v)=S. 所以我们可以边dfs边把每个结点的前缀和pre[u]存到一个数据结构里面,同时查询pre[u] ...

  7. 【BZOJ2783】[JLOI2012]树 DFS+栈+队列

    [BZOJ2783][JLOI2012]树 Description 在这个问题中,给定一个值S和一棵树.在树的每个节点有一个正整数,问有多少条路径的节点总和达到S.路径中节点的深度必须是升序的.假设节 ...

  8. 洛谷 P3252 [JLOI2012]树

    P3252 [JLOI2012]树 题目描述 在这个问题中,给定一个值S和一棵树.在树的每个节点有一个正整数,问有多少条路径的节点总和达到S.路径中节点的深度必须是升序的.假设节点1是根节点,根的深度 ...

  9. BZOJ2588 主席树 + 树上差分

    https://www.lydsy.com/JudgeOnline/problem.php?id=2588 题意:强制在线的询问树链权值第K小(无修) 这种类似于第K小的题,一般容易想到主席树,但是树 ...

随机推荐

  1. 第55节:Java当中的IO流-时间api(下)-上

    Java当中的IO流(下)-上 日期和时间 日期类:java.util.Date 系统时间: long time = System.currentTimeMillis(); public class ...

  2. Kali学习笔记3:TCPDUMP详细使用方法

    Kali自带Wireshark,但一般的Linux系统是不带的,需要自行下载,并且过程略复杂 而纯字符界面的Linux系统无法使用Wireshark 但是,所有Linux系统都会安装TCPDUMP:一 ...

  3. 项目笔记:2017年(SSM架构)

    一.第一部分 前后端分离后的测试工具的使用(Postman): svn先更新再提交,冲突就把自己占位的地方让出,再提交: maven项目也可以用tomcat直接启动: 在mybatis.xml文件中, ...

  4. 【WebAPI】从零开始学会使用.NET Core WebAPI

    介绍 以后会慢慢总结在项目使用中或者学习到的webAPI相关的知识,在这里做记录. 我会从最开始的如何创建WebAPI项目到项目的后续知识一点一点的开始讲述记录. 通过简单有效的方式,让我们能够快速的 ...

  5. 解决ionic3 android 运行出现Application Error - The connection to the server was unsuccessful

    在真机上启动ionic3打包成的android APK,启动了很久结果弹出这个问题: Application Error - The connection to the server was unsu ...

  6. yum安装Elasticsearch5.x

    这里演示YUM和RPM两种方式安装Elasticsearch 下载并安装 public signing key: rpm --import https://artifacts.elastic.co/G ...

  7. Servlet JSP 二重修炼:Filter过滤器

    摘要: 原创出处: http://www.cnblogs.com/Alandre/ 泥沙砖瓦浆木匠 希望转载,保留摘要,谢谢! 真正的朋友就是,当你蒙蔽了所有人的眼睛,也能看穿你真实的样子和心底的痛楚 ...

  8. Apache-httpd.conf详解

    ## Apache服务器主配置文件.  包括服务器指令的目录设置.# 详见 <URL:http://www.apache.org/docs/> ## 请在理解用途的基础上阅读各指令.## ...

  9. Jenkins结合.net平台工具之Nuget

    我们刚刚通过msbuild在Jenkins环境下把一个控制台项目生成exe可执行文件,如果我们引用了nuget包,也能够正常生成,但是我们知道,我们在把项目提交到git或者svn上的时候并不包含这些包 ...

  10. haproxy(8):haproxy代理MySQL要考虑的问题

    HaProxy系列文章:http://www.cnblogs.com/f-ck-need-u/p/7576137.html haproxy可以通过 TCP协议 来代理MySQL.但是两个问题必须考虑: ...