Problem UVA437-The Tower of Babylon

Accept: 3648  Submit: 12532
Time Limit: 3000 mSec

Problem Description

Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many details of this tale have been forgotten. So now, in line with the educational nature of this contest, we will tell you the whole story: The babylonians had n types of blocks, and an unlimited supply of blocks of each type. Each type-i block was a rectangular solid with linear dimensions (xi,yi,zi). A block could be reoriented so that any two of its three dimensions determined the dimensions of the base and the other dimension was the height. They wanted to construct the tallest tower possible by stacking blocks. The problem was that, in building a tower, one block could only be placed on top of another block as long as thetwobasedimensionsoftheupperblockwerebothstrictlysmallerthanthecorresponding base dimensions of the lower block. This meant, for example, that blocks oriented to have equal-sized bases couldn’t be stacked. Your job is to write a program that determines the height of the tallest tower the babylonians can build with a given set of blocks.

Input

The input file will contain one or more test cases. The first line of each test case contains an integer n, representing the number of different blocks in the following data set. The maximum value for n is 30. Each of the next n lines contains three integers representing the values xi, yi and zi. Input is terminated by a value of zero (0) for n.

 Output

For each test case, print one line containing the case number (they are numbered sequentially starting from 1) and the height of the tallest possible tower in the format ‘Case case: maximum height = height’
 

 Sample Input

1
10 20 30
2
6 8 10
5 5 5
7
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7
5
31 41 59
26 53 58
97 93 23
84 62 64
33 83 27
0
 

Sample Output

Case 1: maximum height = 40
Case 2: maximum height = 21
Case 3: maximum height = 28
Case 4: maximum height = 342

题解:原来也做过这种题,但是从来没有升华到DAG上的动态规划这种理论高度(大佬就是强),有了这种主体思路,枚举起点,记忆化搜一发,很容易搞定。

 #include <bits/stdc++.h>

 using namespace std;

 const int maxn = ;

 int n;

 int cube[maxn][];
int dp[maxn][]; void get_dimensions(int *v, int id, int dim) {
int idx = ;
for (int i = ; i < ; i++) {
if (i != dim) {
v[idx++] = cube[id][i];
}
}
} int DP(int i, int j) {
int& ans = dp[i][j];
if (ans > ) return ans; ans = ;
int v[], v2[];
get_dimensions(v, i, j);
for (int x = ; x <= n; x++) {
for (int y = ; y < ; y++) {
get_dimensions(v2, x, y);
if (v2[] < v[] && v2[] < v[]) {
ans = max(ans, DP(x, y));
}
}
}
ans += cube[i][j];
return ans;
} int T = ; int main()
{
//freopen("input.txt", "r", stdin);
while (~scanf("%d", &n) && n) {
for (int i = ; i <= n; i++) {
for (int j = ; j < ; j++) {
scanf("%d", &cube[i][j]);
}
sort(cube[i], cube[i] + );
} memset(dp, -, sizeof(dp));
int ans = ;
for (int i = ; i <= n; i++) {
for (int j = ; j < ; j++) {
ans = max(ans, DP(i, j));
}
}
printf("Case %d: maximum height = %d\n", T++, ans);
}
return ;
}

UVA437-The Tower of Babylon(动态规划基础)的更多相关文章

  1. ACM - 动态规划 - UVA437 The Tower of Babylon

    UVA437 The Tower of Babylon 题解 初始时给了 \(n\) 种长方体方块,每种有无限个,对于每一个方块,我们可以选择一面作为底.然后用这些方块尽可能高地堆叠成一个塔,要求只有 ...

  2. [动态规划]UVA437 - The Tower of Babylon

     The Tower of Babylon  Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many d ...

  3. Uva437 The Tower of Babylon

    https://odzkskevi.qnssl.com/5e1fdf8cae5d11a8f572bae96d6095c0?v=1507521965 Perhaps you have heard of ...

  4. UVa437 The Tower of Babylon(巴比伦塔)

    题目 有n(n<=30)种立方体,每种有无穷多个,摞成尽量高的柱子,要求上面的立方体要严格小于下面的立方体. 原题链接 分析 顶面的大小会影响后续的决策,但不能直接用d[a][b]来表示,因为可 ...

  5. 【DP】【Uva437】UVA437 The Tower of Babylon

    传送门 Description Input Output Sample Input Sample Output Case : maximum height = Case : maximum heigh ...

  6. UVa 437 The Tower of Babylon(经典动态规划)

    传送门 Description Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many details ...

  7. DAG 动态规划 巴比伦塔 B - The Tower of Babylon

    题目:The Tower of Babylon 这是一个DAG 模型,有两种常规解法 1.记忆化搜索, 写函数,去查找上一个符合的值,不断递归 2.递推法 方法一:记忆化搜索 #include < ...

  8. UVa 437 The Tower of Babylon

    Description   Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many details of ...

  9. POJ 2241 The Tower of Babylon

    The Tower of Babylon Time Limit: 1000ms Memory Limit: 65536KB This problem will be judged on PKU. Or ...

随机推荐

  1. 浅析 JavaScript 中的 Function.prototype.bind() 方法

    Function.prototype.bind()方法 bind() 方法的主要作用就是将函数绑定至某个对象,bind() 方法会创建一个函数,函数体内this对象的值会被绑定到传入bind() 函数 ...

  2. JS里面的装箱和拆箱操作

    平日工作里,我想各位少侠对下面的用法都不陌生吧 var s1 = "abc"; var s2 = s1.indexOf("a") 还有例如什么indexOf() ...

  3. 苹果8plus怎么录屏视频

    现在越来越多的手机控,不管在什么地方,什么时候,都是低头看手机的居多,因为手机信息量太大了,一部手机就可以了解最新咨询,但是作为苹果8plus怎么录制手机屏幕,你们知道吗?今天就和大家一起分享苹果8p ...

  4. Android gradle实现多渠道号打包

    在build.gradle中添加 productFlavors{ LETV { applicationId "×××××××××××" //包名   buildConfigFiel ...

  5. 性能优化7--App瘦身

    1. 前言 如果你对App优化比较敏感,那么Apk安装包的大小就一定不会忽视.关于瘦身的原因,大概有以下几个方面: 对于用户来说,在功能差别不大的前提下,更小的Apk大小意味更少的流量消耗,也意味着更 ...

  6. <1>Linux日志查找方法

    Linux日志查找方法 适用于测试,开发,运维人员,用来查找Linux服务器问题的一般方法,比较实用,如果有更好的办法可以一块讨论,欢迎大神们来指导哈!!! 进入正题 第一步.通过Xshell登录服务 ...

  7. IDEA实用插件Lombok

    Lombok Lombok是一个可以通过简单的注解形式来帮助我们简化消除一些必须有但显得很臃肿的Java代码的工具,通过使用对应的注解,可以在编译源码的时候生成对应的方法.通常,我们所定义的对象和be ...

  8. ASP.NET MVC从视图传参到控制器的几种形式

    1. 传递数组 $(function () { var value = ["C#", "JAVA", "PHP"]; $("inp ...

  9. Postgresql的隐藏系统列

    转自 https://www.2cto.com/database/201206/137301.html   Postgresql的隐藏系统列   和oracle数据库一样,postgresql也有自身 ...

  10. sql视图显示数据不对应

    出现这样的原因是修改了表的结构,没有重新编译视图,这种情况出现的几率很少,并不是没有. 解决方法:重新编译一下该视图. 视图是一个虚表,是从一个或几个基本表(或视图)中导出的表,在系统的数据字典中仅存 ...