James Munkres Topology: Sec 37 Exer 1
Exercise 1. Let \(X\) be a space. Let \(\mathcal{D}\) be a collection of subsets of \(X\) that is maximal with respect to the finite intersection property (FIP).
(a) Show that \(x \in \bar{D}\) for every \(D \in \mathcal{D}\) if and only if every neighborhood of \(x\) belongs to \(\mathcal{D}\). Which implication uses maximality of \(\mathcal{D}\)?
Proof:
Prove in the forward direction
Let \(x \in \bar{D}\) for every \(D \in \mathcal{D}\). Let \(U\) be any neighborhood of \(x\) in \(X\). According to Theorem 17.5 (a) in Section 17, if \(x \in \bar{D}\), we have \(U \cap D \neq \varPhi\). This means any neighborhood \(U\) of \(X\) intersects every element in the maximal collection \(\mathcal{D}\). According to Lemma 37.2 (b), \(U \in \mathcal{D}\). The maximality of \(\mathcal{D}\) is used when applying this lemma.
Prove in the backward direction
If there exists a \(D_0 \in \mathcal{D}\) such that \(x \notin \bar{D}_0\), \(x\) belongs to the complement of \(\bar{D}_0\), which is open in \(X\). According to the given condition \(U \in D\) for all \(D \in \mathcal{D}\), \(\bar{D}_0^c\) also belongs to \(\mathcal{D}\). Then \(\bar{D}_0^c \cap D_0 = \varPhi\) contradicts the fact that \(\mathcal{D}\) has the FIP.
(b) Let \(D \in \mathcal{D}\). Show that if \(A \supset D\), then \(A \in \mathcal{D}\).
Proof: Because \(\mathcal{D}\) has the FIP, for all \(D' \in \mathcal{D}\), \(D \cap D' \neq \varPhi\). Because \(D\) is contained in \(A\), \(A \cap D' \neq \varPhi\). According to Lemma 37.2 (b), \(A \in \mathcal{D}\).
(c) Show that if \(X\) satisfies the \(T_1\) axiom, there is at most one point belonging to the intersection of all elements in \(\mathcal{D}\), i.e., \(\bigcap_{D \in \mathcal{D}} \bar{D}\).
Proof: Assume that there are at least two points \(x_1\) and \(x_2\) in \(\bigcap_{D \in \mathcal{D}} \bar{D}\). If \(X\) is a Hausdorff space, there are disjoint open sets \(U_1\) and \(U_2\) in \(X\) containing \(x_1\) and \(x_2\) respectively. According to part (a) of this exercise, we have \(U_1 \in \mathcal{D}\) and \(U_2 \in \mathcal{D}\). Then, \(U_1\) and \(U_2\) being disjoint contradicts the fact that \(\mathcal{D}\) has the FIP.
Unfortunately, the given condition in this exercise, i.e. \(X\) satisfies the \(T_1\) axiom, is weaker than the above assumption that \(X\) is Hausdorff. Hence the above proof does not work. However, there seems no obvious or direct proof for the claim in the exercise. This may imply that the original statement is erroneous.
According to the discussion here, a counter example involving the cofinite topology \(\mathcal{T}_c\) on the set of natural numbers \(\mathbb{N}\) is given. It further shows that the intersection of all the elements in the maximal collection \(\mathcal{D}\) is actually \(\mathbb{N}\) itself. This contradicts the claim in the exercise. In the following, the construction of the counter example will be given.
Definition of the cofinite topology
Definition (Cofinite topology) Let \(\mathcal{T}_c\) be the cofinite topology of the space \(X\). Then for all \(U \in \mathcal{T}_c\), either \(U\) is empty or its complement \(U^c\) is finite.
Next, we'll show \(\mathcal{T}_c\) satisfying the conditions in the above definition really defines a topology on \(X\).
It is obvious that \(\varPhi\) belongs to \(\mathcal{T}_c\).
When \(U = X\), \(U^c = \varPhi\), which is finite. Hence \(X\) belongs to \(\mathcal{T}_c\).
Check the closeness of the union operation.
Let \(\{U_i\}_{i \in I}\) be a collection of open sets in \(\mathcal{T}_c\). If some \(U_i\) in the collection is empty, it has no contribution to the union. Hence we assume all the \(U_i\) in the collection are non-empty.
Then we have
\[
\left( \bigcup_{i \in I} U_i \right)^c = \bigcap_{i \in I} U_i^c,
\]
where each \(U_i^c\) is finite. The above intersection of \(\{U_i^c\}_{i \in I}\) is a subset of finite set, which is also finite. Therefore \(\bigcup_{i \in I} U_i \in \mathcal{T}_c\).Check the closeness of the finite intersection operation.
For a finite collection of open sets in \(\mathcal{T}_c\), we have
\[
\left( \bigcap_{k = 1}^n U_k \right)^c = \bigcup_{k = 1}^n U_k^c.
\]
Because each \(U_i^c\) is a finite set, the union of a finite number of finite sets is still finite. Hence \(\bigcap_{k = 1}^n U_k \in \mathcal{T}_c\).
Due to the above analysis, \(\mathcal{T}_c\) is really a topology for \(X\). We also know that because every finite set in \(X\) assigned with the topology \(\mathcal{T}_c\) is closed, \(X\) satisfies the \(T_1\) axiom.
Counter example derived from the cofinite topology on \(\mathbb{N}\)
Let the set of natural numbers \(\mathbb{N}\) be assigned with the cofinite topology \(\mathcal{T}_c\). \(\mathbb{N}\) satisfies the \(T_1\) axiom. Let \(\mathcal{C}\) be a collection of all those subsets in \(\mathbb{N}\), each of which has a finite complement. This means all the open sets in \(\mathcal{T}_c\) except \(\varPhi\) are included in \(\mathcal{C}\). Accordingly, the following can be obtained.
For all \(U \in \mathcal{C}\), because \(\mathbb{N} - U\) is finite while \(\mathbb{N}\) is infinite, \(U\) is an infinite subset of \(\mathbb{N}\).
Let \(\{U_k\}_{k = 1}^n\) be a finite collection arbitrarily selected from \(\mathcal{C}\). Then we have
\[
\left( \bigcap_{k = 1}^n U_k \right)^c = \bigcup_{k = 1}^n U_k^c.
\]
Because \(U_k^c\) for each \(k\) from \(1\) to \(n\) is a non-empty finite set, their finite union is still finite. Because \(\mathbb{N}\) is infinite, \(\bigcap_{k = 1}^n U_k\) must be infinite, which is a non-empty open set. Therefore \(\mathcal{C}\) has the FIP.
Next, by applying the Zorn's Lemma, a maximal collection \(\mathcal{D}\) exists, which contains \(\mathcal{C}\) as its sub-collection and also has the FIP. For all \(D \in \mathcal{D}\), \(D\) must have infinite number of elements. Otherwise, if \(D = \{d_i\}_{i = 1}^m\), we can select a sub-collection \(\{C_i\}_{i = 1}^m\) from \(\mathcal{C}\), such that \(d_i \notin C_i\). Then \(D \cap C_1 \cap \cdots \cap C_m = \varPhi\), which contradicts the fact that \(\mathcal{D}\) has the FIP.
Select an arbitrary \(x\) in \(D^c\), for any open set \(U\) in \(\mathcal{T}_c\) containing \(x\), it has non-empty intersection with \(D\) because \(D\) is an infinite set. This means any point \(x\) in \(D^c\) is a limiting point of \(D\), so \(\bar{D} = D \cup D^c = \mathbb{N}\). Hence \(\bigcap_{D \in \mathcal{D}} \bar{D} = \mathbb{N}\), which obviously has more than one point.
James Munkres Topology: Sec 37 Exer 1的更多相关文章
- James Munkres Topology: Sec 18 Exer 12
Theorem 18.4 in James Munkres “Topology” states that if a function \(f : A \rightarrow X \times Y\) ...
- James Munkres Topology: Sec 22 Exer 6
Exercise 22.6 Recall that \(\mathbb{R}_{K}\) denotes the real line in the \(K\)-topology. Let \(Y\) ...
- James Munkres Topology: Sec 22 Exer 3
Exercise 22.3 Let \(\pi_1: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}\) be projection on th ...
- James Munkres Topology: Sec 22 Example 1
Example 1 Let \(X\) be the subspace \([0,1]\cup[2,3]\) of \(\mathbb{R}\), and let \(Y\) be the subsp ...
- James Munkres Topology: Lemma 21.2 The sequence lemma
Lemma 21.2 (The sequence lemma) Let \(X\) be a topological space; let \(A \subset X\). If there is a ...
- James Munkres Topology: Theorem 20.3 and metric equivalence
Proof of Theorem 20.3 Theorem 20.3 The topologies on \(\mathbb{R}^n\) induced by the euclidean metri ...
- James Munkres Topology: Theorem 20.4
Theorem 20.4 The uniform topology on \(\mathbb{R}^J\) is finer than the product topology and coarser ...
- James Munkres Topology: Theorem 19.6
Theorem 19.6 Let \(f: A \rightarrow \prod_{\alpha \in J} X_{\alpha}\) be given by the equation \[ f( ...
- James Munkres Topology: Theorem 16.3
Theorem 16.3 If \(A\) is a subspace of \(X\) and \(B\) is a subspace of \(Y\), then the product topo ...
随机推荐
- 左侧滚动条js
<script> var left = document.getElementById('main-left'); var right = document.getElementById( ...
- 【转】浅析SkipList跳跃表原理及代码实现
SkipList在Leveldb以及lucence中都广为使用,是比较高效的数据结构.由于它的代码以及原理实现的简单性,更为人们所接受.首先看看SkipList的定义,为什么叫跳跃表? "S ...
- GridView的stretchMode属性
stretchMode属性值的作用是设置GridView中的条目以什么缩放模式去填充剩余空间.参数stretchMode 可选值为:none,spacingWidth,columnWidth, spa ...
- vscode 配置php
vscode 的官网:https://code.visualstudio.com/docs/languages/php 添加扩张程序: php的设置: php格式化是安装“PHP Intelephen ...
- hibernate入门程序
快速入门 1. 下载Hibernate框架的开发包 2. 编写数据库和表结构 Create database hibernate_day01; Use hibernate_da ...
- SQLServer 2014 本地机房HA+灾备机房DR解决方案
SQLServer 2014 主数据中心HA+灾备机房DR解决方案 SQLServer 2008 的时候使用 local WSFC+DR Mirror方式,对象是单数据库 两个单独的 WSFC 上使用 ...
- Oracle12c Release1 安装图解(详解)
Oracle12c Release1 安装图解(详解) Oracle12c 终于发布了,代号为 c,即为 Cloud(云),替代了网格 (Grid)运算. 我的机器基础环境:Windows8(x64) ...
- Confluence 6 访问你的宏正文(body)
请查看 Writing User Macros 页面获得有关如何写用户宏的介绍. 这个页面介绍你可以在用户宏中可以使用的的代码信息. 访问你的宏正文(body) 在你用户宏模板中的 $body 对象可 ...
- numpy:dot与multiply
http://blog.csdn.net/iamzhangzhuping/article/details/52370241
- 伪Ap接入点
1.创建一个伪造的Ap接入点,必须购买一个无线网卡的设备,接受功率在300Mbps ,低于这个传输速率的值,效果很差,都达到用户可以连接验证的效果.其芯片必须支持kali linux 内核系统. 2. ...