算法之Python实现 - 003 : 换钱的方法数
【题目】给定数组arr,arr中所有的值都为正数且不重复。每个值代表一种面值的货币,每种面值的货币可以使用任意张,再给定一个整数aim代表要找的钱数,求组成aim的方法数。
【代码1】递归
import numpy as np def changemeans(arr,aim):
if len(arr)<0:
print("No coin provided for change!")
arr.sort()
arr.reverse()
m = process(arr,0,aim)
print('There are ',m,' ways!') def process(arr,idx,aim):
res = 0
i = 0
if aim == 0:
res = 1
else :
if idx == len(arr):
res = 0
else :
while arr[idx]*i <= aim:
res += process(arr,idx+1,aim - arr[idx]*i)
i += 1
return res # ===CALL === #
a = [5,10,25,1]
tar = 1000
changemeans(a,tar)
【代码2】改进递归(递归加入记忆搜索):时间复杂度O(N * aim2)
【原理】:例如按照题目中的a = [5,10,25,1],使用a[0]和a[1],利用[25,1]组成剩余的980元的可能性就是一种重复递归,假设利用[25,1]组成剩余的980元需要5秒钟,那么【代码1】需要搜索5*0+10*2,5*2+10*1,5*5 三次递归,【代码2】额外耗用了O((N+1)*(aim+1))的空间,但是只要三次寻址即可。
import numpy as np def changemeans(arr,aim):
if len(arr)<0:
print("No coin provided for change!")
arr.sort()
arr.reverse()
map = np.zeros((len(arr)+1,aim+1))
m = process(arr,0,aim,map)
print('There are ',m,' ways!') def process(arr,idx,aim,map):
res = 0
i = 0
if aim == 0:
res = 1
else :
if idx == len(arr):
res = 0
else :
while arr[idx]*i <= aim:
mapval = map[idx+1][aim- arr[idx]*i]
if mapval != 0:
if mapval == -1: mapval = 0
res += mapval
else:
res += process(arr,idx+1,aim - arr[idx]*i,map)
i += 1
if res == 0:
map[idx][aim] = -1
else :
map[idx][aim] = res
#print(':',int(map[idx][aim]),res)
return res # ===CALL === #
a = [5,10,25,1]
tar = 1000
changemeans(a,tar)
【代码3】:时间复杂度O(N * aim2)
import numpy as np def changemeans(arr,aim):
n = len(arr)
if n<=0:
print('No coin provided for exchange.')
j = 0
dp = np.zeros((n,aim+1)) for i in range(0,n):
dp[i][0] = 1 while j*arr[0]<= aim:
dp[0][j*arr[0]] = 1
j += 1 for i in range(1,n):
for j in range(1,aim+1):
num = 0
k = 0
while j-arr[i]*k >= 0:
num += dp[i-1][j-arr[i]*k]
k += 1
dp[i][j] = num print(dp[n-1][aim]) # ===CALL === #
a = [5,10,25,1]
tar = 1000
changemeans(a,tar)
【代码4】:
另外实际上算arr[0..i-1]的组成剩下的方法,只会从最少的那个钱币为下标的位置开始,因此可以改为:
import numpy as np def changemeans(arr,aim):
n = len(arr)
if n<=0:
print('No coin provided for exchange.')
j = 0
dp = np.zeros((n,aim+1)) for i in range(0,n):
dp[i][0] = 1 while j*arr[0]<= aim:
dp[0][j*arr[0]] = 1
j += 1 for i in range(1,n):
for j in range(min(arr)-1,aim+1):
num = 0
k = 0
while j-arr[i]*k >= 0:
num += dp[i-1][j-arr[i]*k]
k += 1
dp[i][j] = num print(dp[n-1][aim]) # ===CALL === #
a = [5,10,25,2]
tar = 1000
changemeans(a,tar)
算法之Python实现 - 003 : 换钱的方法数的更多相关文章
- 算法进阶面试题07——求子数组的最大异或和(前缀树)、换钱的方法数(递归改dp最全套路解说)、纸牌博弈、机器人行走问题
主要讲第五课的内容前缀树应用和第六课内容暴力递归改动态规划的最全步骤 第一题 给定一个数组,求子数组的最大异或和. 一个数组的异或和为,数组中所有的数异或起来的结果. 简单的前缀树应用 暴力方法: 先 ...
- [DP]换钱的方法数
题目三 给定数组arr, arr中所有的值都为整数且不重复.每个值代表一种面值的货币,每种面值的货币可以使用任意张,在给定一个整数aim代表要找的钱数,求换钱有多少种方法. 解法一 --暴力递归 用0 ...
- [程序员代码面试指南]递归和动态规划-换钱的方法数(DP,完全背包)
题目描述 给定arr,arr中所有的值都为正数且不重复.每个值代表一种面值的货币,每种面值的货币可以使用任意张,再给定一个整数aim,求组成aim的方法数. 解题思路 完全背包 和"求换钱的 ...
- 八大排序算法的 Python 实现
转载: 八大排序算法的 Python 实现 本文用Python实现了插入排序.希尔排序.冒泡排序.快速排序.直接选择排序.堆排序.归并排序.基数排序. 1.插入排序 描述 插入排序的基本操作就是将一个 ...
- Python练习题 003:完全平方数
[Python练习题 003]一个整数,它加上100后是一个完全平方数,再加上168又是一个完全平方数,请问该数是多少? --------------------------------------- ...
- 数据关联分析 association analysis (Aprior算法,python代码)
1基本概念 购物篮事务(market basket transaction),如下表,表中每一行对应一个事务,包含唯一标识TID,和购买的商品集合.本文介绍一种成为关联分析(association a ...
- 机器学习算法与Python实践之(四)支持向量机(SVM)实现
机器学习算法与Python实践之(四)支持向量机(SVM)实现 机器学习算法与Python实践之(四)支持向量机(SVM)实现 zouxy09@qq.com http://blog.csdn.net/ ...
- 机器学习算法与Python实践之(三)支持向量机(SVM)进阶
机器学习算法与Python实践之(三)支持向量机(SVM)进阶 机器学习算法与Python实践之(三)支持向量机(SVM)进阶 zouxy09@qq.com http://blog.csdn.net/ ...
- 机器学习算法与Python实践之(二)支持向量机(SVM)初级
机器学习算法与Python实践之(二)支持向量机(SVM)初级 机器学习算法与Python实践之(二)支持向量机(SVM)初级 zouxy09@qq.com http://blog.csdn.net/ ...
随机推荐
- javascript中的立即执行函数的原理
形如 ((function Test(a) { //code here... })('Hello')); 被称作立即执行函数. 首先需要了解的是,这并不是一种hack,这是javascript的基本语 ...
- [转]Linux中python3.6+ipython+Jupyter Notebook环境
python3.6安装 下载python安装包,这里下载的最新的3.6.1版本 https://www.python.org/ftp/python/3.6.1/ 将安装包上传到服务器并解压 tar z ...
- 由consequence忽然发现英语也挺有意思
con- 是拉丁语前缀, 有 with, together 的意思. con- 和 com- 一样的. 只是因为 在 b p m 前发 m 音更方便, 所以这些音前的 con- 变为 com- (例 ...
- Spring3基础原理解析
一.Spring3主要含义 Spring3是一个轻量级的控制反转(IOC)和面向切面(AOP)的容器框架. 注:IOC的作用:对象依赖的其他对象通过被动的形式传递进来而不是这个对象常见或者查找依赖对象 ...
- 菜鸟的java代码审计之旅-0之java基础知识
前言: 对于java的代码审计我就是一个小白,没有代码基础(不会java),从0开始记录我的java漏洞的审计学习之旅.对于java来说是一门很难的语言,但是不去学习就永远不会.对于一门很复杂的语言如 ...
- SQL 生日得到年龄
CREATE FUNCTION ufn_hr_getagefrombirthday ( @birthday DATE, @now DATE =NULL ) ) BEGIN IF (@now IS NU ...
- 去除 ServiceStack.Redis 的6000次限制。
方法一. 下载 https://github.com/ServiceStack/ServiceStack.Text 修改LicenseUtils.cs文件中的AssertValidUsage var ...
- VMware 12 安装 Windows server 2008 系统
一.准备工作 安装了VMware 12 的PC 准备windows server 2008 的ISO操作系统文件 官网地址:https://www.microsoft.com/en-us/downl ...
- JAVA相关技术
开发服务器环境: 1.Linux系统 CentOS 6.5\7 2.JDK1.8 3.tomcat 9 4.mysql 5.7 开发环境: 1.开发集成工具:idea 2.构建工具maven 仓库暂时 ...
- runAllManagedModulesForAllRequests
https://weblog.west-wind.com/posts/2012/Oct/25/Caveats-with-the-runAllManagedModulesForAllRequests-i ...