栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量。在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起。

栋栋的植物种得非常整齐,一共有n列,每列有m棵,植物的横竖间距都一样,因此对于每一棵植物,栋栋可以用一个坐标(x, y)来表示,其中x的范围是1至n,表示是在第x列,y的范围是1至m,表示是在第x列的第y棵。

由于能量汇集机器较大,不便移动,栋栋将它放在了一个角上,坐标正好是(0, 0)。

能量汇集机器在汇集的过程中有一定的能量损失。如果一棵植物与能量汇集机器连接而成的线段上有k棵植物,则能 量的损失为2k + 1。例如,当能量汇集机器收集坐标为(2, 4)的植物时,由于连接线段上存在一棵植物(1, 2),会产生3的能量损失。注意,如果一棵植物与能量汇集机器连接的线段上没有植物,则能量损失为1。现在要计算总的能量损失。

下面给出了一个能量采集的例子,其中n = 5,m = 4,一共有20棵植物,在每棵植物上标明了能量汇集机器收集它的能量时产生的能量损失。

题意为求1-n之间的所有数和1-m之间的所有数两两之间的GCD。
     一道非常经典的莫比乌斯反演的例题,但有一种容斥的方法更加简单。

考虑枚举每个gcd,那么gcd为当前gcd的倍数的数对就有n/gcd*m/gcd个。

在考虑把多余的方案去掉,只要枚举gcd的所有倍数,把它们都减掉就好了。

做的时候就倒着枚举gcd就可以了。

#include<iostream>
#include<cstdio>
using namespace std;
int gcd(int x,int y){return y?gcd(y,x%y):x;}
int n,m,mi;
long long ans,f[];
int main()
{
cin>>n>>m;mi=min(m,n);
for(int i=mi;i>=;--i)
{
f[i]=(long long)(m/i)*(n/i);
for(int j=(i<<);j<=mi;j+=i)f[i]-=f[j];
ans+=f[i]*(i*-);
}
cout<<ans;
return ;
}

NOI2010能量采集(数学)的更多相关文章

  1. BZOJ 2005 [Noi2010]能量采集 (数学+容斥 或 莫比乌斯反演)

    2005: [Noi2010]能量采集 Time Limit: 10 Sec  Memory Limit: 552 MBSubmit: 4493  Solved: 2695[Submit][Statu ...

  2. 【bzoj2005】 [Noi2010]能量采集 数学结论(gcd)

    [bzoj2005] [Noi2010]能量采集 Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnli ...

  3. [NOI2010] 能量采集 (数学)

    [NOI2010] 能量采集 题目描述 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. ...

  4. [BZOJ2005][NOI2010]能量采集 数学

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2005 发现与$(0,0)$连线斜率相同的点会被挡住.也就是对于$(a,b)$且$gcd(a ...

  5. BZOJ 2005: [Noi2010]能量采集

    2005: [Noi2010]能量采集 Time Limit: 10 Sec  Memory Limit: 552 MBSubmit: 3312  Solved: 1971[Submit][Statu ...

  6. noi2010 能量采集

    2005: [Noi2010]能量采集 Time Limit: 10 Sec  Memory Limit: 552 MB Submit: 3068  Solved: 1820 [Submit][Sta ...

  7. bzoj2005: [Noi2010]能量采集

    lsj师兄的题解 一个点(x, y)的能量损失为 (gcd(x, y) - 1) * 2 + 1 = gcd(x, y) *  2 - 1. 设g(i)为 gcd(x, y) = i ( 1 < ...

  8. BZOJ 2005: [Noi2010]能量采集( 数论 + 容斥原理 )

    一个点(x, y)的能量损失为 (gcd(x, y) - 1) * 2 + 1 = gcd(x, y) *  2 - 1. 设g(i)为 gcd(x, y) = i ( 1 <= x <= ...

  9. 2005: [Noi2010]能量采集

    2005: [Noi2010]能量采集 Time Limit: 10 Sec  Memory Limit: 552 MBSubmit: 1831  Solved: 1086[Submit][Statu ...

随机推荐

  1. Centos6.x升级内核方法支持Docker

    Centos6升级内核方法_百度经验https://jingyan.baidu.com/article/7e4409531bda252fc1e2ef4c.html

  2. 项目中常用的MySQL 优化

    本文我们来谈谈项目中常用的MySQL优化方法,共19条,具体如下: 一.EXPLAIN 做MySQL优化,我们要善用EXPLAIN查看SQL执行计划. 下面来个简单的示例,标注(1.2.3.4.5)我 ...

  3. Laravel渴求式加载(比较容易理解理解load与with关系)

    渴求式加载 当以属性方式访问 Eloquent关联关系的时候,关联关系数据是「懒惰式加载」的,这意味着关联关系数据直到第一次访问的时候才被加载.不过,Eloquent 还可以在查询父级模型的同时「渴求 ...

  4. MT4用EA测试历史数据时日志出现:stopped because of stop out

    今天用嘉盛的MT4测试一个EA,谁知道才走了十几天数据就完 了,看结果本金也没亏完啊,才亏了一半,而且我测的是1年的时间. 查看日志一有条警告:stopped because of stop out, ...

  5. 安装sqlprompt

    特别说明:注册机会报毒,安装前请先关闭杀毒软件!下载好附件之后解压,打开SQLPrompt_7.2.0.241.exe按照提示安装完成.安装完成后断网!打开数据库,会在菜单栏中看到SQL Prompt ...

  6. DTW的原理及matlab实现

    参考: https://www.cnblogs.com/Daringoo/p/4095508.html

  7. Linux用户权限指令, 定时任务等指令

    一. 网卡配置详解 网络配置文件: /etc/sysconfig/network 网络接口配置文件: /etc/sysconfig/network-scripts/ifcfg-INTERFACE_NA ...

  8. python学习笔记(11)--数据组织的维度

    数据的操作周期 存储  -- 表示 -- 操作 一维数据表示 如果数据有序,可以使用列表[]:如果数据没有顺序,可以使用集合{} 一维数组存储 存储方式一:空格分隔 ,使用一个或多个空格分隔进行分隔, ...

  9. 老男孩python学习自修第十三天【md5加密】

    示例代码如下: hashlib_test.py #!/usr/bin/env python # _*_ coding:UTF-8 _*_ import hashlib def genPasswd(na ...

  10. Dreamweaver怎样用Edge Web Fonts功能

    https://jingyan.baidu.com/article/37bce2beb3af6f1002f3a2c9.html