一、创建DataFrame和Dataset

1.1 创建DataFrame

Spark 中所有功能的入口点是 SparkSession,可以使用 SparkSession.builder() 创建。创建后应用程序就可以从现有 RDD,Hive 表或 Spark 数据源创建 DataFrame。示例如下:

val spark = SparkSession.builder().appName("Spark-SQL").master("local[2]").getOrCreate()
val df = spark.read.json("/usr/file/json/emp.json")
df.show()

// 建议在进行 spark SQL 编程前导入下面的隐式转换,因为 DataFrames 和 dataSets 中很多操作都依赖了隐式转换
import spark.implicits._

可以使用 spark-shell 进行测试,需要注意的是 spark-shell 启动后会自动创建一个名为 sparkSparkSession,在命令行中可以直接引用即可:

1.2 创建Dataset

Spark 支持由内部数据集和外部数据集来创建 DataSet,其创建方式分别如下:

1. 由外部数据集创建

// 1.需要导入隐式转换
import spark.implicits._

// 2.创建 case class,等价于 Java Bean
case class Emp(ename: String, comm: Double, deptno: Long, empno: Long,
               hiredate: String, job: String, mgr: Long, sal: Double)

// 3.由外部数据集创建 Datasets
val ds = spark.read.json("/usr/file/emp.json").as[Emp]
ds.show()

2. 由内部数据集创建

// 1.需要导入隐式转换
import spark.implicits._

// 2.创建 case class,等价于 Java Bean
case class Emp(ename: String, comm: Double, deptno: Long, empno: Long,
               hiredate: String, job: String, mgr: Long, sal: Double)

// 3.由内部数据集创建 Datasets
val caseClassDS = Seq(Emp("ALLEN", 300.0, 30, 7499, "1981-02-20 00:00:00", "SALESMAN", 7698, 1600.0),
                      Emp("JONES", 300.0, 30, 7499, "1981-02-20 00:00:00", "SALESMAN", 7698, 1600.0))
                    .toDS()
caseClassDS.show()

1.3 由RDD创建DataFrame

Spark 支持两种方式把 RDD 转换为 DataFrame,分别是使用反射推断和指定 Schema 转换:

1. 使用反射推断

// 1.导入隐式转换
import spark.implicits._

// 2.创建部门类
case class Dept(deptno: Long, dname: String, loc: String)

// 3.创建 RDD 并转换为 dataSet
val rddToDS = spark.sparkContext
  .textFile("/usr/file/dept.txt")
  .map(_.split("\t"))
  .map(line => Dept(line(0).trim.toLong, line(1), line(2)))
  .toDS()  // 如果调用 toDF() 则转换为 dataFrame 

2. 以编程方式指定Schema

import org.apache.spark.sql.Row
import org.apache.spark.sql.types._

// 1.定义每个列的列类型
val fields = Array(StructField("deptno", LongType, nullable = true),
                   StructField("dname", StringType, nullable = true),
                   StructField("loc", StringType, nullable = true))

// 2.创建 schema
val schema = StructType(fields)

// 3.创建 RDD
val deptRDD = spark.sparkContext.textFile("/usr/file/dept.txt")
val rowRDD = deptRDD.map(_.split("\t")).map(line => Row(line(0).toLong, line(1), line(2)))

// 4.将 RDD 转换为 dataFrame
val deptDF = spark.createDataFrame(rowRDD, schema)
deptDF.show()

1.4 DataFrames与Datasets互相转换

Spark 提供了非常简单的转换方法用于 DataFrame 与 Dataset 间的互相转换,示例如下:

# DataFrames转Datasets
scala> df.as[Emp]
res1: org.apache.spark.sql.Dataset[Emp] = [COMM: double, DEPTNO: bigint ... 6 more fields]

# Datasets转DataFrames
scala> ds.toDF()
res2: org.apache.spark.sql.DataFrame = [COMM: double, DEPTNO: bigint ... 6 more fields]

二、Columns列操作

2.1 引用列

Spark 支持多种方法来构造和引用列,最简单的是使用 col()column() 函数。

col("colName")
column("colName")

// 对于 Scala 语言而言,还可以使用$"myColumn"和'myColumn 这两种语法糖进行引用。
df.select($"ename", $"job").show()
df.select('ename, 'job).show()

2.2 新增列

// 基于已有列值新增列
df.withColumn("upSal",$"sal"+1000)
// 基于固定值新增列
df.withColumn("intCol",lit(1000))

2.3 删除列

// 支持删除多个列
df.drop("comm","job").show()

2.4 重命名列

df.withColumnRenamed("comm", "common").show()

需要说明的是新增,删除,重命名列都会产生新的 DataFrame,原来的 DataFrame 不会被改变。

三、使用Structured API进行基本查询

// 1.查询员工姓名及工作
df.select($"ename", $"job").show()

// 2.filter 查询工资大于 2000 的员工信息
df.filter($"sal" > 2000).show()

// 3.orderBy 按照部门编号降序,工资升序进行查询
df.orderBy(desc("deptno"), asc("sal")).show()

// 4.limit 查询工资最高的 3 名员工的信息
df.orderBy(desc("sal")).limit(3).show()

// 5.distinct 查询所有部门编号
df.select("deptno").distinct().show()

// 6.groupBy 分组统计部门人数
df.groupBy("deptno").count().show()

四、使用Spark SQL进行基本查询

4.1 Spark SQL基本使用

// 1.首先需要将 DataFrame 注册为临时视图
df.createOrReplaceTempView("emp")

// 2.查询员工姓名及工作
spark.sql("SELECT ename,job FROM emp").show()

// 3.查询工资大于 2000 的员工信息
spark.sql("SELECT * FROM emp where sal > 2000").show()

// 4.orderBy 按照部门编号降序,工资升序进行查询
spark.sql("SELECT * FROM emp ORDER BY deptno DESC,sal ASC").show()

// 5.limit  查询工资最高的 3 名员工的信息
spark.sql("SELECT * FROM emp ORDER BY sal DESC LIMIT 3").show()

// 6.distinct 查询所有部门编号
spark.sql("SELECT DISTINCT(deptno) FROM emp").show()

// 7.分组统计部门人数
spark.sql("SELECT deptno,count(ename) FROM emp group by deptno").show()

4.2 全局临时视图

上面使用 createOrReplaceTempView 创建的是会话临时视图,它的生命周期仅限于会话范围,会随会话的结束而结束。

你也可以使用 createGlobalTempView 创建全局临时视图,全局临时视图可以在所有会话之间共享,并直到整个 Spark 应用程序终止后才会消失。全局临时视图被定义在内置的 global_temp 数据库下,需要使用限定名称进行引用,如 SELECT * FROM global_temp.view1

// 注册为全局临时视图
df.createGlobalTempView("gemp")

// 使用限定名称进行引用
spark.sql("SELECT ename,job FROM global_temp.gemp").show()

参考资料

Spark SQL, DataFrames and Datasets Guide > Getting Started

更多大数据系列文章可以参见 GitHub 开源项目大数据入门指南

Spark 系列(九)—— Spark SQL 之 Structured API的更多相关文章

  1. Spark学习之路(九)—— Spark SQL 之 Structured API

    一.创建DataFrame和Dataset 1.1 创建DataFrame Spark中所有功能的入口点是SparkSession,可以使用SparkSession.builder()创建.创建后应用 ...

  2. Spark系列(九)DAGScheduler工作原理

    以wordcount为示例进行深入分析 1  33  ) { 46        logInfo("Submitting " + tasks.size + " missi ...

  3. Spark系列—01 Spark集群的安装

    一.概述 关于Spark是什么.为什么学习Spark等等,在这就不说了,直接看这个:http://spark.apache.org, 我就直接说一下Spark的一些优势: 1.快 与Hadoop的Ma ...

  4. Spark系列—02 Spark程序牛刀小试

    一.执行第一个Spark程序 1.执行程序 我们执行一下Spark自带的一个例子,利用蒙特·卡罗算法求PI: 启动Spark集群后,可以在集群的任何一台机器上执行一下命令: /home/spark/s ...

  5. Spark SQL 编程API入门系列之Spark SQL支持的API

    不多说,直接上干货! Spark SQL支持的API SQL DataFrame(推荐方式,也能执行SQL) Dataset(还在发展) SQL SQL 支持basic SQL syntax/Hive ...

  6. Spark 系列(八)—— Spark SQL 之 DataFrame 和 Dataset

    一.Spark SQL简介 Spark SQL 是 Spark 中的一个子模块,主要用于操作结构化数据.它具有以下特点: 能够将 SQL 查询与 Spark 程序无缝混合,允许您使用 SQL 或 Da ...

  7. 小白学习Spark系列四:RDD踩坑总结(scala+spark2.1 sql常用方法)

    初次尝试用 Spark+scala 完成项目的重构,由于两者之前都没接触过,所以边学边用的过程大多艰难.首先面临的是如何快速上手,然后是代码调优.性能调优.本章主要记录自己在项目中遇到的问题以及解决方 ...

  8. Spark SQL概念学习系列之Spark SQL概述

    很多人一个误区,Spark SQL重点不是在SQL啊,而是在结构化数据处理! Spark SQL结构化数据处理 概要: 01 Spark SQL概述 02 Spark SQL基本原理 03 Spark ...

  9. Spark SQL概念学习系列之Spark SQL的简介(一)

    Spark SQL提供在大数据上的SQL查询功能,类似于Shark在整个生态系统的角色,它们可以统称为SQL on Spark. 之前,Shark的查询编译和优化器依赖于Hive,使得Shark不得不 ...

随机推荐

  1. os.path.join路径拼接的问题

    问题一: import os a = os.path.join("/test1", "/test2") print(a) b = os.path.join(&q ...

  2. scala刷LeetCode--21 合并两个有序链表

    一.题目描述 将两个有序链表合并为一个新的有序链表并返回.新链表是通过拼接给定的两个链表的所有节点组成的. 二.示例 输入:1->2->4, 1->3->4输出:1->1 ...

  3. Bzoj 3624: [Apio2008]免费道路 (贪心+生成树)

    Sample Input 5 7 2 1 3 0 4 5 1 3 2 0 5 3 1 4 3 0 1 2 1 4 2 1 Sample Output 3 2 0 4 3 0 5 3 1 1 2 1 这 ...

  4. python对Excel的读取

    在python自动化中,经常会遇到对数据文件的操作,比如添加多名员工,但是直接将员工数据写在python文件中,不但工作量大,要是以后再次遇到类似批量数据操作还会写在python文件中吗? 应对这一问 ...

  5. Java面试题汇总---升级版(附答案)

    前几天写了Java面试题汇总---基础版,总结了面试中常见的问题及答案,那我今天基于昨天的话题做一次升级,也就是说,求职者除了要学习了解哪些常见的基础面试题之外,还得准备些什么呢? 对有工作经验的求职 ...

  6. 手机web app开发笔记

    各位朋友好,最近自学开发了一个手机Web APP,“编程之路”,主要功能包括文章的展示,留言,注册登录,音乐播放等.为了记录学习心得,提高自己的编程水平,也许对其他朋友有点启发,特整理开发笔记如下. ...

  7. dijkstra算法学习笔记

    dijkstra是一种单源最短路径算法,即求一个点到其他点的最短路.不能处理负边权. 最近某种广为人知的算法频繁被卡,让dijkstra逐渐成为了主流,甚至在初赛中鞭尸了SPFA(? dijkstra ...

  8. MFC开发--截图工具

    近期学习了MFC的相关知识,MFC(Microsoft Foundation Classes)是微软公司提供的一个类库,可以这样简单理解,就是对于Win32的封装(MFC对windows API函数的 ...

  9. Flink实战(七) - Time & Windows编程

    0 相关源码 掌握Flink中三种常用的Time处理方式,掌握Flink中滚动窗口以及滑动窗口的使用,了解Flink中的watermark. Flink 在流处理工程中支持不同的时间概念. 1 处理时 ...

  10. Netty中的策略者模式

    策略者模式的特点 在设计类的继承体系时,我们会刻意的把公共的部分都提取到基类中 比如先设计Person类,把人类都具有的行为放到这个Person,特有的行为设计成抽象方法,让子类具体去实现, 这样后续 ...