luogu P1768 天路 |01分数规划+负环
题目描述
言归正传,小X的梦中,他在西藏开了一家大型旅游公司,现在,他要为西藏的各个景点设计一组铁路线。但是,小X发现,来旅游的游客都很挑剔,他们乘火车在各个景点间游览,景点的趣味当然是不用说啦,关键是路上。试想,若是乘火车一圈转悠,却发现回到了游玩过的某个景点,花了一大堆钱却在路上看不到好的风景,那是有多么的恼火啊。
所以,小X为所有的路径定义了两个值,Vi和Pi,分别表示火车线路的风景趣味度和乘坐一次的价格。现在小X想知道,乘客从任意一个景点开始坐火车走过的一条回路上所有的V之和与P之和的比值的最大值。以便为顾客们推荐一条环绕旅游路线(路线不一定包含所有的景点,但是不可以存在重复的火车路线)。
于是,小X梦醒之后找到了你……
输入格式
第一行两个正整数N,M,表示有N个景点,M条火车路线,火车路线是单向的。
以下M行,每行4个正整数,分别表示一条路线的起点,终点,V值和P值。
注意,两个顶点间可能有多条轨道,但一次只能走其中的一条。
输出格式
一个实数,表示一条回路上最大的比值,保留1位小数。
若没有回路,输出-1。
说明/提示
对于30%的数据,1≤N≤100,1≤M≤20;
对于60%的数据,1≤N≤3,000,1≤M≤2,000;
对于100%的数据,1≤N≤7,000,1≤M≤20,000,1≤Vi,Pi≤1,000.
保证答案在200以内.
01分数规划+负环
ans>= \(\sum\)vi/pi
\(\sum\) ans*p1-vi>=0
把这个作为权值,然后找负环
#include<queue>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define db double
using namespace std;
const db eps=1e-2;
const int N=7e3+10,M=2e4+10,inf=1<<29;
int nxt[M],head[N],go[M],V[M],P[M],tot;
inline void add(int u,int v,int o1,int o2){
nxt[++tot]=head[u];head[u]=tot;go[tot]=v;V[tot]=o1;P[tot]=o2;
}
db dis[N];
bool vis[N];
int used[N];
int s;
int n,m;
inline bool spfa(db ans,int now){
vis[now]=true;
for(int i=head[now];i;i=nxt[i]){
int v=go[i];
db x=ans*P[i]-V[i];
if(dis[v]>dis[now]+x){
if(vis[v])return 0;
else{
dis[v]=dis[now]+x;
vis[now]=1;
if(!spfa(ans,v))return 0;
}
}
}
vis[now]=0;
return 1;
}
inline bool check(db x){
for(int i=1;i<=n;i++){
dis[i]=inf;
used[i]=0;
vis[i]=0;
}
return !spfa(x,s);
}
int main(){
cin>>n>>m;
db l=0,r=3000,ans=-1;
for(int i=1,u,v,o1,o2;i<=m;i++){
scanf("%d%d%d%d",&u,&v,&o1,&o2);
add(u,v,o1,o2);
}
s=n+1;
for(int i=1;i<=n;i++)add(s,i,0,0);
while(l+eps<r){
db mid=(l+r)/2;
if(check(mid)){
l=mid;
ans=mid;
}else{
r=mid;
}
}
if(ans==-1)printf("-1\n");
else
printf("%.1f\n",ans);
}
luogu P1768 天路 |01分数规划+负环的更多相关文章
- luogu 2115 破坏(01分数规划)
题意:给出一个序列,删除一个连续的子串后使得剩下的平均值最小. 典型的01分数规划,令f(x)=(sum1[i]+sum2[j])/(i+j).sum1表示前缀和,sum2表示后缀和,那么我们就相当于 ...
- P3288-[SCOI2014]方伯伯运椰子【0/1分数规划,负环】
正题 题目链接:https://www.luogu.com.cn/problem/P3288 题目大意 给出\(n\)个点\(m\)条边的一张图,没条边\(i\)流量为\(c_i\),费用是\(d_i ...
- POJ3621Sightseeing Cows[01分数规划 spfa(dfs)负环 ]
Sightseeing Cows Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 9703 Accepted: 3299 ...
- bzoj 3597: [Scoi2014]方伯伯运椰子 [01分数规划 消圈定理 spfa负环]
3597: [Scoi2014]方伯伯运椰子 题意: from mhy12345 给你一个满流网络,对于每一条边,压缩容量1 需要费用ai,扩展容量1 需要bi, 当前容量上限ci,每单位通过该边花费 ...
- bzoj3597[Scoi2014]方伯伯运椰子 01分数规划+spfa判负环
3597: [Scoi2014]方伯伯运椰子 Time Limit: 30 Sec Memory Limit: 64 MBSubmit: 594 Solved: 360[Submit][Statu ...
- 【题解】 [HNOI2009] 最小圈 (01分数规划,二分答案,负环)
题目背景 如果你能提供题面或者题意简述,请直接在讨论区发帖,感谢你的贡献. 题目描述 对于一张有向图,要你求图中最小圈的平均值最小是多少,即若一个圈经过k个节点,那么一个圈的平均值为圈上k条边权的和除 ...
- 2018.09.24 bzoj1486: [HNOI2009]最小圈(01分数规划+spfa判负环)
传送门 答案只保留了6位小数WA了两次233. 这就是一个简单的01分数规划. 直接二分答案,根据图中有没有负环存在进行调整. 注意二分边界. 另外dfs版spfa判负环真心快很多. 代码: #inc ...
- [转]01分数规划算法 ACM 二分 Dinkelbach 最优比率生成树 最优比率环
01分数规划 前置技能 二分思想最短路算法一些数学脑细胞? 问题模型1 基本01分数规划问题 给定nn个二元组(valuei,costi)(valuei,costi),valueivaluei是选择此 ...
- 2018.09.12 poj3621Sightseeing Cows(01分数规划+spfa判环)
传送门 01分数规划板题啊. 发现就是一个最优比率环. 这个直接二分+spfa判负环就行了. 代码: #include<iostream> #include<cstdio> # ...
随机推荐
- UiPath之数据透视表
今天给各位小伙伴们讲讲如何使用UiPath来创建数据透视表,相信大家在Execl中经常会使用. ---小U的QQ群(714733686):小U的订阅号[UiPath8888]--- 在UiPath里面 ...
- 2019年10月13日 计算机英语习题 wangqingchao
Match the explanations in Column B with words and expressions in Columna. (搭配每组中意义相同的词或短语) Types of ...
- PHP更新用户微信信息的方法
PHP更新用户微信信息的方法 大家都知道 授权登录一次 获取后 再登录就会提示已经授权登录 就没办法重新获得用户信息了 这个时候根据openid来获取了请求user/info这个获取ps:必须关注过公 ...
- 使用CXF发布webservice服务及注意要点
一.概念 1.什么是webservice Web service是一个平台独立的,低耦合的,自包含的.基于可编程的web的应用程序,可使用开放的XML标准来描述.发布.发现.协调和配置这些应用程序,用 ...
- 【algo&ds】【吐血整理】4.树和二叉树、完全二叉树、满二叉树、二叉查找树、平衡二叉树、堆、哈夫曼树、B树、字典树、红黑树、跳表、散列表
本博客内容耗时4天整理,如果需要转载,请注明出处,谢谢. 1.树 1.1树的定义 在计算机科学中,树(英语:tree)是一种抽象数据类型(ADT)或是实作这种抽象数据类型的数据结构,用来模拟具有树状结 ...
- 用正则表达式获取URL中的查询参数
总结获取url中查询参数的两种方式 通过正则表达式获取单个参数 url中的所有查询参数可以通过 window.location.search 字段获取,以字符串的形式返回.并有固定的格式 ?param ...
- nyoj 216-A problem is easy ((i + 1) * (j + 1) = N + 1)
216-A problem is easy 内存限制:64MB 时间限制:1000ms 特判: No 通过数:13 提交数:60 难度:3 题目描述: When Teddy was a child , ...
- mysql基础之数据类型
一.整型 分为:tinyint .smallint .mediumint .int .bigint 常用的 分为以下三项: tinyint. smallint.int 数据类型 存储范围 字节 tin ...
- ZeroC ICE的远程调用框架 Slice如何帮助我们进行Ice异步编程(AMI,AMD)
Slice最大的用处就是为我们使用Ice进行编程,代劳绝大部分的重复性代码,并提供一些帮助性的框架代码,如用于AMI和AMD方式进行异步编程的回调框架. 当Slice不为我们生成代码时,我们仍然可以按 ...
- this绑定方式总结
最近在回顾js的一些基础知识,把<你不知道的js>系列又看了一遍,this始终是重中之重,还是决定把this相关知识做一个系统的总结,也方便自己日后回顾. this的四条绑定规则 1.默认 ...