Python处理NetCDF格式数据为TIFF数据(附脚本代码)
博客小序:NetCDF格式数据广泛应用于科学数据的存储,最近几日自己利用python处理了一些NetCDF数据,特撰此博文以记之。
参考博客:
https://www.cnblogs.com/shoufengwei/p/9068379.html
https://blog.csdn.net/EWBA_GIS_RS_ER/article/details/84076201
http://www.clarmy.net/2018/11/01/python%E8%AF%BB%E5%8F%96nc%E6%96%87%E4%BB%B6%E7%9A%84%E5%85%A5%E9%97%A8%E7%BA%A7%E6%93%8D%E4%BD%9C/
1.NetCDF数据简介
NetCDF官方文档
https://www.unidata.ucar.edu/software/netcdf/docs/netcdf_introduction.html
2.Python对NetCDF数据基本操作
python中专门用于处理NetCDF数据的库为netCDF4库,需在自己的python路径中安装
In[1]:import netCDF4 as nc #模块导入
In[2]:data = 'F:\\data___python_test\\nc_to_tif\\nc\\ndvi3g_geo_v1_1990_0106.nc4'
nc_data = nc.Dataset(data) #利用.Dataset()方法读取nc数据
nc_data
Out[2]: <type 'netCDF4._netCDF4.Dataset'>
In[3]:nc_data.variables #以存储ndvi的nc数据为例,查看nc文件包含的变量
Out[3]:OrderedDict([(u'lon', <type 'netCDF4._netCDF4.Variable'>
float64 lon(lon)
unlimited dimensions:
current shape = (4320,)
filling on, default _FillValue of 9.96920996839e+36 used),
(u'lat', <type 'netCDF4._netCDF4.Variable'>
float64 lat(lat)
unlimited dimensions:
current shape = (2160,)
filling on, default _FillValue of 9.96920996839e+36 used),
(u'time', <type 'netCDF4._netCDF4.Variable'>
float64 time(time)
unlimited dimensions:
current shape = (12,)
filling on, default _FillValue of 9.96920996839e+36 used),
(u'satellites', <type 'netCDF4._netCDF4.Variable'>
int16 satellites(time)
unlimited dimensions:
current shape = (12,)
filling on, default _FillValue of -32767 used),
(u'ndvi', <type 'netCDF4._netCDF4.Variable'>
int16 ndvi(time, lat, lon)
units: 1
scale: x 10000
missing_value: -5000.0
valid_range: [-0.3 1. ]
unlimited dimensions:
current shape = (12, 2160, 4320)
filling on, default _FillValue of -32767 used),
(u'percentile', <type 'netCDF4._netCDF4.Variable'>
int16 percentile(time, lat, lon)
units: %
scale: x 10
flags: flag 0: from data flag 1: spline interpolation flag 2: possible snow/cloud cover
valid_range: flag*2000 + [0 1000]
unlimited dimensions:
current shape = (12, 2160, 4320)
filling on, default _FillValue of -32767 used)])
In[4]:ndvi = nc_data.variables['ndvi'] #单独查看nc文件中存储的变量信息
ndvi
Out[4]:<type 'netCDF4._netCDF4.Variable'>
int16 ndvi(time, lat, lon)
units: 1
scale: x 10000
missing_value: -5000.0
valid_range: [-0.3 1. ]
unlimited dimensions:
current shape = (12, 2160, 4320)
filling on, default _FillValue of -32767 used
3.代码——利用Python将NetCDF文件转存为Tiff文件
此代码是自己在处理NDVI数据时所写的脚本,目的是将每一期NDVI的NC格式数据提取并另存为12期的TIFF数据,便于后期分析处理。
# -*- coding: utf-8 -*-
# 模块导入
import numpy as np
import netCDF4 as nc
from osgeo import gdal,osr,ogr
import os
import glob
# 单个nc数据ndvi数据读取为多个tif文件,并将ndvi值化为-1-1之间
def NC_to_tiffs(data,Output_folder):
nc_data_obj = nc.Dataset(data)
Lon = nc_data_obj.variables['lon'][:]
Lat = nc_data_obj.variables['lat'][:]
ndvi_arr = np.asarray(nc_data_obj.variables['ndvi']) #将ndvi数据读取为数组
ndvi_arr_float = ndvi_arr.astype(float)/10000 #将int类型改为float类型,并化为-1 - 1之间
#影像的左上角和右下角坐标
LonMin,LatMax,LonMax,LatMin = [Lon.min(),Lat.max(),Lon.max(),Lat.min()]
#分辨率计算
N_Lat = len(Lat)
N_Lon = len(Lon)
Lon_Res = (LonMax - LonMin) /(float(N_Lon)-1)
Lat_Res = (LatMax - LatMin) / (float(N_Lat)-1)
for i in range(len(ndvi_arr[:])):
#创建.tif文件
driver = gdal.GetDriverByName('GTiff')
out_tif_name = Output_folder + '\\'+ data.split('\\')[-1].split('.')[0] + '_' + str(i+1) + '.tif'
out_tif = driver.Create(out_tif_name,N_Lon,N_Lat,1,gdal.GDT_Float32)
# 设置影像的显示范围
#-Lat_Res一定要是-的
geotransform = (LonMin,Lon_Res, 0, LatMax, 0, -Lat_Res)
out_tif.SetGeoTransform(geotransform)
#获取地理坐标系统信息,用于选取需要的地理坐标系统
srs = osr.SpatialReference()
srs.ImportFromEPSG(4326) # 定义输出的坐标系为"WGS 84",AUTHORITY["EPSG","4326"]
out_tif.SetProjection(srs.ExportToWkt()) # 给新建图层赋予投影信息
#数据写出
out_tif.GetRasterBand(1).WriteArray(ndvi_arr_float[i]) # 将数据写入内存,此时没有写入硬盘
out_tif.FlushCache() # 将数据写入硬盘
out_tif = None # 注意必须关闭tif文件
def main():
Input_folder = 'F:\\data___python_test\\nc_to_tif\\nc'
Output_folder = 'F:\\data___python_test\\nc_to_tif\\tif_result'
# 读取所有nc数据
data_list = glob.glob(Input_folder + '\\*.nc4')
for i in range(len(data_list)):
data = data_list[i]
NC_to_tiffs(data,Output_folder)
print data + '-----转tif成功'
print'----转换结束----'
main()
本文作者:DQTDQT
限于作者水平有限,如文中存在任何错误,欢迎不吝指正、交流。
联系方式:
QQ:1426097423
E-mail:duanquntaoyx@163.com
本文版权归作者和博客园共有,欢迎转载、交流,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文链接,如果觉得本文对您有益,欢迎点赞、探讨。
Python处理NetCDF格式数据为TIFF数据(附脚本代码)的更多相关文章
- Python:GeoJson格式的多边形裁剪Tiff影像并计算栅格数值
JSON是通过键值对表示数据对象的一种格式,其全称为JavaScript Object Notation,它采用完全独立于编程语言的文本格式来存储和表示数据,轻量级.简洁清晰的层次结构.容易解析等特点 ...
- Python反编译调用有道翻译(附完整代码)
网易有道翻译是一款非常优秀的产品,他们的神经网络翻译真的挺无敌.无奈有道客户端实在是太难用了,而且在某些具体场景 (比如对网站进行批量翻译) 无法使用,而有道的云服务又特别的贵,一般人是无法 ...
- python打印表格式数据,留出正确的空格和段落星号或注释
python打印表格式数据,留出正确的空格,格式化打出 代码如下: def printPicnic(itemsDict,leftWidth,rightWidth): print('PICNIC ITE ...
- python中json格式数据输出实现方式
python中json格式数据输出实现方式 主要使用json模块,直接导入import json即可. 小例子如下: #coding=UTF-8 import json info={} info[&q ...
- (数据科学学习手札65)利用Python实现Shp格式向GeoJSON的转换
一.简介 Shp格式是GIS中非常重要的数据格式,主要在Arcgis中使用,但在进行很多基于网页的空间数据可视化时,通常只接受GeoJSON格式的数据,众所周知JSON(JavaScript Obje ...
- python打印表格式数据-星号或注释
python打印表格式数据,留出正确的空格,格式化打出 代码如下: def printPicnic(itemsDict,leftWidth,rightWidth): print('PICNIC ITE ...
- 【231】◀▶ 利用 IDL 读取 TIFF 数据
参考:Create Latitude/Longitude Arrays for GeoTIFF Image 用到的函数为 READ_TIFF,通过此函数可以获取 TIFF 数据的数组信息,同时可以获取 ...
- 使用python将mysql数据库的数据转换为json数据
由于产品运营部需要采用第三方个推平台,来推送消息.如果手动一个个键入字段和字段值,容易出错,且非常繁琐,需要将mysql的数据转换为json数据,直接复制即可. 本文将涉及到如何使用Python访问M ...
- python 爬取天猫美的评论数据
笔者最近迷上了数据挖掘和机器学习,要做数据分析首先得有数据才行.对于我等平民来说,最廉价的获取数据的方法,应该是用爬虫在网络上爬取数据了.本文记录一下笔者爬取天猫某商品的全过程,淘宝上面的店铺也是类似 ...
随机推荐
- helm安装MINIO文件服务器
MinIO Quickstart Guide MinIO 是一个基于Apache License v2.0开源协议的对象存储服务.它兼容亚马逊S3云存储服务接口,非常适合于存储大容量非结构化的数据,例 ...
- Linux学习笔记05之网络基础知识
一.OSI参考模型:适用于所有网络,现有模型,后有协议 1.应用层:应用程序.用户接口 2.表示层:编码转换.压缩.解压.加密等 3.会话层:建立.维护.拆除会话 4.传输层规定了应用程序的的接口 协 ...
- java基础知识总结,绝对经典
写代码: 1,明确需求.我要做什么? 2,分析思路.我要怎么做?1,2,3. 3,确定步骤.每一个思路部分用到哪些语句,方法,和对象. 4,代码实现.用具体的java语言代码把思路体现出来. 学习新技 ...
- 1.Go语言copy函数、sort排序、双向链表、list操作和双向循环链表
1.1.copy函数 通过copy函数可以把一个切片内容复制到另一个切片中 (1)把长切片拷贝到短切片中 package main import "fmt" func main() ...
- 详解 git 忽略文件 删除远端仓库的文件
要解决的问题 忽略指定类型的文件 或 某个指定文件(夹) 将已经push到github的文件删除, 但本地的文件不删除 (写忽略规则之前就把这个文件夹push了 T_T ) 将想要忽略掉的文件的相关记 ...
- hadoop安装解决之道
# 壹.故障现象 ```xml Microsoft Windows [版本 10.0.18362.239] (c) 2019 Microsoft Corporation.保留所有权利. C:\User ...
- Java学习|多线程学习笔记
什么是线程? 可以理解为进程中独立运行的字任务. 使用多线程: 1.继承Thread类:从源码可以看到,Thread累实现了Runnable接口. 如果多次调用st ...
- 携程PMO--如何召开卓有成效的回顾会
话题介绍 回顾会提供团队反思迭代过程并提出改进措施的机会.回顾会是团队成员共同进行的协作活动,让团队成员跟进并落实改进措施,使团队在下一个冲刺中更高效,这是相当重要的. 我们给出了回顾会的 ...
- 通过livy向CDH集群的spark提交任务
场景 产品中需要通过前端界面选择执行某种任务(spark任务),然后通过livy 的restful api 提交集群的spark任务 简单介绍下livy,翻译自官网: Livy是基于Apache许可的 ...
- ZooKeeper实现读写锁
在上一篇文章,我们已经实现了分布式锁.今天更进一步,在分布式锁的基础之上,实现读写锁. 完整代码在 https://github.com/SeemSilly/codestory/tree/master ...