One layer SoftMax Classifier, "Handwriting recognition"
import lib needed¶
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
import re
from glob import glob
begin, load data¶
def load_data(train_path='train/',test_path='test/'):
train_list=glob(r'train/*.png')
pattern = re.compile(r'num(\d).png')
train_id = np.array([float(pattern.search(img_name).groups()[0]) for img_name in train_list])
train_data=np.concatenate([np.array(Image.open(img_name)).reshape(1,784) for img_name in train_list],axis=0).astype(np.float)
test_list=glob(r'test/*.png')
test_id=np.array([float(pattern.search(img_name).groups()[0]) for img_name in test_list])
test_data=np.concatenate([np.array(Image.open(img_name)).reshape(1,784) for img_name in test_list],axis=0).astype(np.float)
return train_id,train_data,test_id,test_data
load data, print the shape of data¶
train_id,train_data,test_id,test_data=load_data()
train_id.shape,train_data.shape,test_id.shape,test_data.shape
((60000,), (60000, 784), (10000,), (10000, 784))
train_val=np.zeros((train_id.shape[0],10))
for i in range(train_id.shape[0]):
train_val[i,train_id[i].astype('int')]=1
split data into minibatches¶
mini_batch_num=100
mini_batch_size=600
define function need, such as softmax, propagation,back_propagation¶
def softmax(x):
x=x-np.max(x) #using softmax(x)=softmax(x+c)
exp_x=np.exp(x)
softmax_x=exp_x/sum(np.exp(x))
return softmax_x
use cross entrophy to compute loss, this is part of propagation¶
def propa(train_x,train_y,W,b): #propagation
yt=softmax(np.dot(train_x,W)+b)
loss=-np.sum(train_y.T.dot(np.log(yt))) #cross entrophy
dy=(yt-train_y).T
return dy,loss
update W¶
def back_propa(train_data,train_id,W,b,alpha,data_size):
for i in range(data_size):
dy,loss=propa(train_data[i,:],train_id[i,:],W,b)
dy=dy.reshape(1,10)
p=train_data[i,:]
p=p.reshape(784,1)
dW=alpha*np.dot(p,dy)
W-=dW
return W,loss
initialize W and b¶
W=np.zeros((784,10))
b=1
loop and update, also print accurancy of our traindataset¶
for i in range(mini_batch_num):
for iteration in range(20):
lb=(mini_batch_size*i)
ub=(mini_batch_size*(i+1))
mini_batch_data=train_data[lb:ub,:]
mini_batch_id=train_val[lb:ub,:]
W,loss=back_propa(mini_batch_data,mini_batch_id,W,b,0.01,600)
count=0
for j in range(600):
if np.argmax(softmax(train_data[j,:].dot(W)))==train_id[j].astype('int'):
count+=1
acc=count/600
if i%10==0:
print('batch={},acc={}'.format(i+1,acc))
e:\Anaconda3\lib\site-packages\ipykernel_launcher.py:3: RuntimeWarning: divide by zero encountered in log
This is separate from the ipykernel package so we can avoid doing imports until
batch=1,acc=1.0
batch=11,acc=0.8833333333333333
batch=21,acc=0.865
batch=31,acc=0.8983333333333333
batch=41,acc=0.8766666666666667
batch=51,acc=0.8883333333333333
batch=61,acc=0.8733333333333333
batch=71,acc=0.845
batch=81,acc=0.89
batch=91,acc=0.8766666666666667
predict in the test dataset¶
for j in range(test_id.shape[0]):
if np.argmax(softmax(test_data[j,:].dot(W)))==test_id[j].astype('int'):
count+=1
acc=count/test_id.shape[0]
print(acc)
0.9103
One layer SoftMax Classifier, "Handwriting recognition"的更多相关文章
- Online handwriting recognition using multi convolution neural networks
w可以考虑从计算机的“机械性.重复性”特征去设计“低效的”算法. https://www.codeproject.com/articles/523074/webcontrols/ Online han ...
- 机器学习: Softmax Classifier (三个隐含层)
程序实现 softmax classifier, 含有三个隐含层的情况.activation function 是 ReLU : f(x)=max(0,x) f1=w1x+b1 h1=max(0,f1 ...
- 机器学习:Softmax Classifier (两个隐含层)
程序实现 softmax classifier, 含有两个隐含层的情况.activation function 是 ReLU : f(x)=max(0,x) f1=w1x+b1 h1=max(0,f1 ...
- [DeeplearningAI笔记]序列模型2.6Word2Vec/Skip-grams/hierarchical softmax classifier 分级softmax 分类器
5.2自然语言处理 觉得有用的话,欢迎一起讨论相互学习~Follow Me 2.6 Word2Vec Word2Vec相对于原先介绍的词嵌入的方法来说更加的简单快速. Mikolov T, Chen ...
- 机器学习 Softmax classifier (一个隐含层)
程序实现 softmax classifier, 含有一个隐含层的情况.activation function 是 ReLU : f(x)=max(0,x) f1=w1x+b1 h1=max(0,f1 ...
- 机器学习 Softmax classifier (无隐含层)
程序实现 Softmax classifer, 没有隐含层, f=wx+b y=efi∑jefj %% Softmax classifier function Out=Softmax_Classifi ...
- [转]csharp:Microsoft.Ink 手写识别(HandWriting Recognition)
原贴:http://www.cnblogs.com/geovindu/p/3702427.html 下載: //Microsoft Windows XP Tablet PC Edition 2005 ...
- csharp:Microsoft.Ink 手写识别(HandWriting Recognition)
/* 下載: //Microsoft Windows XP Tablet PC Edition 2005 Recognizer Pack http://www.microsoft.com/zh-cn/ ...
- Kernel Functions for Machine Learning Applications
In recent years, Kernel methods have received major attention, particularly due to the increased pop ...
随机推荐
- 大型互联网公司分布式ID方案总结
ID是数据的唯一标识,传统的做法是利用UUID和数据库的自增ID,在互联网企业中,大部分公司使用的都是Mysql,并且因为需要事务支持,所以通常会使用Innodb存储引擎,UUID太长以及无序,所以并 ...
- odoo12从零开始:二、个性化定制odoo12 之 创建数据库页面
剧情回顾 上一文章,我们已经成功运行了odoo12,并访问localhost:8069看到如下界面: 我们还没有创建数据库,但是我们发现,数据库管理页面的logo是odoo,数据库页面全是英文的,对于 ...
- 2019DX#8
Solved Pro.ID Title Ratio(Accepted / Submitted) 1001 Acesrc and Cube Hypernet 7.32%(3/41) 1002 A ...
- CF985C Liebig's Barrels 贪心 第二十
Liebig's Barrels time limit per test 2 seconds memory limit per test 256 megabytes input standard in ...
- android CTS 命令
> h //help Host: help: show this message help all: show the complete tradefed help exit: grace ...
- 分析一次double强转float的翻车原因
背景 人逢喜事精神爽,总算熬到下班撩~~ 正准备和同事打个招呼回家,被同事拖住问了.
- ets查询接口match、select说明
ets:match/2用法:match(Tab, Pattern) -> [Match]返回和模式Pattern匹配的对象.一个匹配模式可能包含:绑定部分.'_'匹配任何Erlang项和匹配变量 ...
- python实现持久化存储,操作表格,时间戳
import xlrd,xlwt,pickle,time,datetime book = xlrd.open_workbook("练习.xlsx") sheet1 = book.s ...
- Spring Cloud Alibaba | Sentinel:分布式系统的流量防卫兵进阶实战
Spring Cloud Alibaba | Sentinel:分布式系统的流量防卫兵进阶实战 在阅读本文前,建议先阅读<Spring Cloud Alibaba | Sentinel:分布式系 ...
- 011 实例2-Python蟒蛇绘制
目录 一."Python蟒蛇绘制"问题分析 1.1 Python蟒蛇绘制 二."Python蟒蛇绘制"实例编写 三.运行效果 3.1 程序关键 四." ...