[Machine Learning] Linear regression
1. Variable definitions
m
: training examples' count
\(y\) :
\(X\) : design matrix. each row of \(X\) is a training example, each column of \(X\) is a feature
\begin{pmatrix}
1 & x^{(1)}_1 & ... & x^{(1)}_n \\
1 & x^{(2)}_1 & ... & x^{(2)}_n \\
... & ... & ... & ... \\
1 & x^{(n)}_1 & ... & x^{(n)}_n \\
\end{pmatrix}\]
\begin{pmatrix}
\theta_0 \\
\theta_1 \\
... \\
\theta_n \\
\end{pmatrix}\]
2. Hypothesis
\begin{pmatrix}
x_0 \\
x_1 \\
... \\
x_n \\
\end{pmatrix}
\]
\]
sigmoid function
\]
g = 1 ./ (1 + e .^ (-z));
3. Cost functioin
\]
vectorization edition of Octave
J = -(1 / m) * sum(y' * log(sigmoid(X * theta)) + (1 - y)' * log(1 - sigmoid(X * theta)));
4. Goal
find \(\theta\) to minimize \(J(\theta)\), \(\theta\) is a vector here
4.1 Gradient descent
\]
repeat until convergence{
\(\theta_j := \theta_j - \frac{\alpha}{m } \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x^{(i)}_j\)
}
vectorization
\begin{pmatrix}
h_\theta(x^{(1)})-y^{(1)} & h_\theta(x^{(2)})-y^{(2)} & ... & h_\theta(x^{(n)}-y^{(n)})
\end{pmatrix}
\begin{pmatrix}
x^{(1)}_0 & x^{(1)}_1 & ... & x^{(1)}_3 \\
x^{(2)}_0 & x^{(2)}_1 & ... & x^{(2)}_3 \\
... & ... & ... & ... \\
x^{(n)}_0 & x^{(n)}_1 & ... & x^{(n)}_3 \\
\end{pmatrix}
\]
\begin{pmatrix}
\sum_{i=1}^m(h_\theta(x^{(i)}) - y^{(i)})x^{(i)}_0 &
\sum_{i=1}^m(h_\theta(x^{(i)}) - y^{(i)})x^{(i)}_1 &
... &
\sum_{i=1}^m(h_\theta(x^{(i)}) - y^{(i)})x^{(i)}_n
\end{pmatrix}
\]
\]
\]
\(X\theta\) is nx1, \(y\) is nx1
\(\frac{1}{1+e^{X\theta}} - y\) is nx1
\begin{pmatrix}
h_\theta(x^{(1)})-y^{(1)} & h_\theta(x^{(2)})-y^{(2)} & ... & h_\theta(x^{(n)})-y^{(n)}
\end{pmatrix}
\]
\]
[Machine Learning] Linear regression的更多相关文章
- Machine Learning—Linear Regression
Evernote的同步分享:Machine Learning-Linear Regression 版权声明:本文博客原创文章.博客,未经同意,不得转载.
- 机器学习---线性回归(Machine Learning Linear Regression)
线性回归是机器学习中最基础的模型,掌握了线性回归模型,有利于以后更容易地理解其它复杂的模型. 线性回归看似简单,但是其中包含了线性代数,微积分,概率等诸多方面的知识.让我们先从最简单的形式开始. 一元 ...
- 机器学习---三种线性算法的比较(线性回归,感知机,逻辑回归)(Machine Learning Linear Regression Perceptron Logistic Regression Comparison)
最小二乘线性回归,感知机,逻辑回归的比较: 最小二乘线性回归 Least Squares Linear Regression 感知机 Perceptron 二分类逻辑回归 Binary Logis ...
- 机器学习---逻辑回归(二)(Machine Learning Logistic Regression II)
在<机器学习---逻辑回归(一)(Machine Learning Logistic Regression I)>一文中,我们讨论了如何用逻辑回归解决二分类问题以及逻辑回归算法的本质.现在 ...
- 机器学习---逻辑回归(一)(Machine Learning Logistic Regression I)
逻辑回归(Logistic Regression)是一种经典的线性分类算法.逻辑回归虽然叫回归,但是其模型是用来分类的. 让我们先从最简单的二分类问题开始.给定特征向量x=([x1,x2,...,xn ...
- [Machine learning] Logistic regression
1. Variable definitions m : training examples' count \(X\) : design matrix. each row of \(X\) is a t ...
- 机器学习---最小二乘线性回归模型的5个基本假设(Machine Learning Least Squares Linear Regression Assumptions)
在之前的文章<机器学习---线性回归(Machine Learning Linear Regression)>中说到,使用最小二乘回归模型需要满足一些假设条件.但是这些假设条件却往往是人们 ...
- 机器学习---用python实现最小二乘线性回归算法并用随机梯度下降法求解 (Machine Learning Least Squares Linear Regression Application SGD)
在<机器学习---线性回归(Machine Learning Linear Regression)>一文中,我们主要介绍了最小二乘线性回归算法以及简单地介绍了梯度下降法.现在,让我们来实践 ...
- How do I learn machine learning?
https://www.quora.com/How-do-I-learn-machine-learning-1?redirected_qid=6578644 How Can I Learn X? ...
随机推荐
- POJ-2406Power Strings-KMP+定理
Power Strings 题意:给一个字符串S长度不超过10^6,求最大的n使得S由n个相同的字符串a连接而成,如:"ababab"则由n=3个"ab"连接而 ...
- HDU 4607 Park Visit 树的最大直径
题意: 莱克尔和她的朋友到公园玩,公园很大也很漂亮.公园包含n个景点通过n-1条边相连.克莱尔太累了,所以不能去参观所有点景点. 经过深思熟虑,她决定只访问其中的k个景点.她拿出地图发现所有景点的入口 ...
- 2015 JSOI冬令营训练 彩色格子 题解
解析 棋盘上黑白格染色.曼哈顿距离偶数:奇偶性相同. 枚举有几种颜色分到白格,组合数计算即可. 注意预处理,时间还是比较宽裕的. 为了不重复计数,考虑枚举严格用了i种颜色,我们再枚举分配j种给白集合. ...
- springboot2之结合mybatis增删改查解析
1. 场景描述 本节结合springboot2.springmvc.mybatis.swagger2等,搭建一个完整的增删改查项目,希望通过这个基础项目,能帮忙朋友快速上手springboot2项目. ...
- 对line-height的理解
<html> <head> <style> </style> </head> <body> <!--line-height ...
- Python Flask打造一个视频网站实战视频教程
下载链接:https://www.yinxiangit.com/607.html 目录: 本套课程从零基础讲解flask开发网站.涉及到的知识点包括:Python和pycharm的安装.urls和视图 ...
- STA——multicycle path
之前去地平线面试的时候被问到了multicycle path的一点问题,其实这个问题我应该知道,看过<Constraining Designs for Synthesis and Timing ...
- Django之使用内置函数和celery发邮件
邮箱配置 开启stmp服务 以163邮箱为例,点击设置里面的stmp 开启客户端授权密码 如上所示,因为我已经开启了,所以出现的是以上页面. 这样,邮箱的准备就已经完成了. 使用Django内置函数发 ...
- hadoop snapshot 备份恢复 .
1.允许创建快照 首先,在你想要进行备份的文件夹下面 执行命令,允许该文件夹创建快照 hdfs dfsadmin -allowSnapshot <path> 例如:hdfs dfsadmi ...
- springmvc 事务控制与数据库隔离级别
springmvc 事物传播与数据库隔离控制 http://www.cnblogs.com/yangy608/archive/2011/06/29/2093478.html 一.Propagation ...