1. Variable definitions

m : training examples' count

\(y\) :

\(X\) : design matrix. each row of \(X\) is a training example, each column of \(X\) is a feature

\[X =
\begin{pmatrix}
1 & x^{(1)}_1 & ... & x^{(1)}_n \\
1 & x^{(2)}_1 & ... & x^{(2)}_n \\
... & ... & ... & ... \\
1 & x^{(n)}_1 & ... & x^{(n)}_n \\
\end{pmatrix}\]

\[\theta =
\begin{pmatrix}
\theta_0 \\
\theta_1 \\
... \\
\theta_n \\
\end{pmatrix}\]

2. Hypothesis

\[x=
\begin{pmatrix}
x_0 \\
x_1 \\
... \\
x_n \\
\end{pmatrix}
\]

\[h_\theta(x) = g(\theta^T x) = g(x_0\theta_0 + x_1\theta_1 + ... + x_n\theta_n),
\]

sigmoid function

\[g(z) = \frac{1}{1 + e^{-z}},
\]

g = 1 ./ (1 + e .^ (-z));

3. Cost functioin

\[J(\theta) = \frac{1}{m}\sum_{i=1}^m[-y^{(i)}log(h_\theta(x^{(i)})) - (1-y^{(i)})log(1 - h_\theta(x^{(i)}))],
\]

vectorization edition of Octave

J = -(1 / m) * sum(y' * log(sigmoid(X * theta)) + (1 - y)' * log(1 - sigmoid(X * theta)));

4. Goal

find \(\theta\) to minimize \(J(\theta)\), \(\theta\) is a vector here

4.1 Gradient descent

\[\frac{\partial J(\theta)}{\partial \theta_j} = \frac{1}{m} \sum_{i=1}^m(h_\theta(x^{(i)}) - y^{(i)})x^{(i)}_j,
\]

repeat until convergence{

     \(\theta_j := \theta_j - \frac{\alpha}{m } \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x^{(i)}_j\)

}

vectorization

\[S=
\begin{pmatrix}
h_\theta(x^{(1)})-y^{(1)} & h_\theta(x^{(2)})-y^{(2)} & ... & h_\theta(x^{(n)}-y^{(n)})
\end{pmatrix}
\begin{pmatrix}
x^{(1)}_0 & x^{(1)}_1 & ... & x^{(1)}_3 \\
x^{(2)}_0 & x^{(2)}_1 & ... & x^{(2)}_3 \\
... & ... & ... & ... \\
x^{(n)}_0 & x^{(n)}_1 & ... & x^{(n)}_3 \\
\end{pmatrix}
\]

\[=
\begin{pmatrix}
\sum_{i=1}^m(h_\theta(x^{(i)}) - y^{(i)})x^{(i)}_0 &
\sum_{i=1}^m(h_\theta(x^{(i)}) - y^{(i)})x^{(i)}_1 &
... &
\sum_{i=1}^m(h_\theta(x^{(i)}) - y^{(i)})x^{(i)}_n
\end{pmatrix}
\]

\[\theta = \theta - S^T
\]

\[h_\theta(X) = g(X\theta) = \frac{1}{1 + e^{(-X\theta)}}
\]

\(X\theta\) is nx1, \(y\) is nx1

\(\frac{1}{1+e^{X\theta}} - y\) is nx1

\[\frac{1}{1 + e^{(-X\theta)}} - y=
\begin{pmatrix}
h_\theta(x^{(1)})-y^{(1)} & h_\theta(x^{(2)})-y^{(2)} & ... & h_\theta(x^{(n)})-y^{(n)}
\end{pmatrix}
\]

\[\theta = \theta - \alpha(\frac{1}{1 + e^{(-X\theta)}} - y)X
\]

[Machine Learning] Linear regression的更多相关文章

  1. Machine Learning—Linear Regression

    Evernote的同步分享:Machine Learning-Linear Regression 版权声明:本文博客原创文章.博客,未经同意,不得转载.

  2. 机器学习---线性回归(Machine Learning Linear Regression)

    线性回归是机器学习中最基础的模型,掌握了线性回归模型,有利于以后更容易地理解其它复杂的模型. 线性回归看似简单,但是其中包含了线性代数,微积分,概率等诸多方面的知识.让我们先从最简单的形式开始. 一元 ...

  3. 机器学习---三种线性算法的比较(线性回归,感知机,逻辑回归)(Machine Learning Linear Regression Perceptron Logistic Regression Comparison)

    最小二乘线性回归,感知机,逻辑回归的比较:   最小二乘线性回归 Least Squares Linear Regression 感知机 Perceptron 二分类逻辑回归 Binary Logis ...

  4. 机器学习---逻辑回归(二)(Machine Learning Logistic Regression II)

    在<机器学习---逻辑回归(一)(Machine Learning Logistic Regression I)>一文中,我们讨论了如何用逻辑回归解决二分类问题以及逻辑回归算法的本质.现在 ...

  5. 机器学习---逻辑回归(一)(Machine Learning Logistic Regression I)

    逻辑回归(Logistic Regression)是一种经典的线性分类算法.逻辑回归虽然叫回归,但是其模型是用来分类的. 让我们先从最简单的二分类问题开始.给定特征向量x=([x1,x2,...,xn ...

  6. [Machine learning] Logistic regression

    1. Variable definitions m : training examples' count \(X\) : design matrix. each row of \(X\) is a t ...

  7. 机器学习---最小二乘线性回归模型的5个基本假设(Machine Learning Least Squares Linear Regression Assumptions)

    在之前的文章<机器学习---线性回归(Machine Learning Linear Regression)>中说到,使用最小二乘回归模型需要满足一些假设条件.但是这些假设条件却往往是人们 ...

  8. 机器学习---用python实现最小二乘线性回归算法并用随机梯度下降法求解 (Machine Learning Least Squares Linear Regression Application SGD)

    在<机器学习---线性回归(Machine Learning Linear Regression)>一文中,我们主要介绍了最小二乘线性回归算法以及简单地介绍了梯度下降法.现在,让我们来实践 ...

  9. How do I learn machine learning?

    https://www.quora.com/How-do-I-learn-machine-learning-1?redirected_qid=6578644   How Can I Learn X? ...

随机推荐

  1. P1640 [SCOI2010]连续攻击游戏 二分图构造

    https://www.luogu.org/problemnew/show/P1640 题意 lxhgww最近迷上了一款游戏,在游戏里,他拥有很多的装备,每种装备都有2个属性,这些属性的值用[1,10 ...

  2. zstuoj 4423: panda和卡片

    传送门:http://oj.acm.zstu.edu.cn/JudgeOnline/problem.php?id=4423 题意: 给定许多数字,这些数字都是2的倍数,问可以用这些数字组成多少个数字. ...

  3. CCPC 网络赛

    array 做法 比赛中的表现..... 已经无法言语形容了. 题意是,查询前缀中大于某个数字的 mex,在线. 一下把问题转化为偏序问题.... 带修主席树?????这下好,直接一箭穿心,武将被移除 ...

  4. 牛客练习赛51 A abc

    A. abc 题意: 给出一个字符串s,你需要做的是统计s中子串”abc”的个数.子串的定义就是存在任意下标a<b<c,那么”s[a]s[b]s[c]”就构成s的一个子串.如”abc”的子 ...

  5. SqlServer数据库技巧

    1.数值转换失败提供默认值 , )) end

  6. 良许 | 听说,有个同事因为关闭服务器被打进 ICU ……

    提问:你是如何关闭电脑的? 普通青年 文艺青年 二逼青年 你是属于哪一种呢? 实话说, 这三种良许都干过~ 还好我没有对服务器这么做, 否则-- 分分钟被打进 ICU -- 1. 关机命令知多少 对于 ...

  7. 安卓手机360浏览器神奇bug,难以理解的

    今天渠道组,说广告在安卓手机360浏览器上显示不了,我就去排查这个问题,发现所有安卓浏览器还真看不到广告,本来以为是360浏览器屏蔽了,,但是另一个项目就没事,后来经过几个小时的不断alert断点调试 ...

  8. 【Offer】[53-3] 【数组中数值和下标相等的元素】

    题目描述 思路分析 测试用例 Java代码 代码链接 题目描述 假设一个单调递增的数组里的每个元素都是整数并且是唯一的.请编程实现一个函数,找出数组中任意一个数值等于其下标的元素.例如,在数组{-3, ...

  9. CentOS 7.3 安装 libsodium 1.0.18

    出现configure: error: The Sodium crypto library libraries not found.错误或者notfound 1.下载并解压 wget https:// ...

  10. jumper-server-第一次粗略配置

    https://www.cnblogs.com/zsl-find/articles/11179450.html