Storm VS Flink ——性能对比
1.背景
Apache Flink 和 Apache Storm 是当前业界广泛使用的两个分布式实时计算框架。其中 Apache Storm(以下简称“Storm”)在美团点评实时计算业务中已有较为成熟的运用(可参考 Storm 的 可靠性保证测试),有管理平台、常用 API 和相应的文档,大量实时作业基于 Storm 构建。而 Apache Flink(以下简称“Flink”)在近期倍受关注,具有高吞吐、低延迟、高可靠和精确计算等 特性,对事件窗口有很好的支持,目前在美团点评实时计算业务中也已有一定应用。
为深入熟悉了解 Flink 框架,验证其稳定性和可靠性,评估其实时处理性能,识别该体系中的 缺点,找到其性能瓶颈并进行优化,给用户提供最适合的实时计算引擎,我们以实践经验丰富 的 Storm 框架作为对照,进行了一系列实验测试 Flink 框架的性能,计算 Flink 作为确保“至 少一次”和“恰好一次”语义的实时计算框架时对资源的消耗,为实时计算平台资源规划、框 架选择、性能调优等决策及 Flink 平台的建设提出建议并提供数据支持,为后续的 SLA 建设提供一定参考。
Flink 与 Storm 两个框架对比:
流计算框架Flink与Storm 的性能对比
Storm | Flink | |
---|---|---|
状态管理 | 无状态,需用户自行进行状态管理 | 有状态 |
窗口支持 | 对事件窗口支持较弱,缓存整个窗口的所有 数据,窗口结束时一起计算 | 窗口支持较为完善,自带一些窗口聚合方法,并 且会自动管理窗口状态。 |
消息投递 | At Most Once At Least Once | At Most Once At Least Once Exactly Once |
容错方式 | ACK机制:对每个消息进行全链路跟踪,失败 或超时进行重发。 | 检查点机制:通过分布式一致性快照机制,对数 据流和算子状态进行保存。在发生错误时,使系 统能够进行回滚。 |
应用现状 | 在美团点评实时计算业务中已有较为成熟的 运用,有管理平台、常用 API 和相应的文档, 大量实时作业基于 Storm 构建。 | 在美团点评实时计算业务中已有一定应用,但 是管理平台、API 及文档等仍需进一步完善。 |
2.测试目标
评估不同场景、不同数据压力下 Flink 和 Storm 两个实时计算框架目前的性能表现,获取其详 细性能数据并找到处理性能的极限;了解不同配置对 Flink 性能影响的程度,分析各种配置的 适用场景,从而得出调优建议。
2.1 测试场景
“输入-输出”简单处理场景
通过对“输入-输出”这样简单处理逻辑场景的测试,尽可能减少其它因素的干扰,反映两个框 架本身的性能。
同时测算框架处理能力的极限,处理更加复杂的逻辑的性能不会比纯粹“输入-输出”更高。
用户作业耗时较长的场景
如果用户的处理逻辑较为复杂,或是访问了数据库等外部组件,其执行时间会增大,作业的性 能会受到影响。因此,我们测试了用户作业耗时较长的场景下两个框架的调度性能。
窗口统计场景
实时计算中常有对时间窗口或计数窗口进行统计的需求,例如一天中每五分钟的访问量,每 100 个订单中有多少个使用了优惠等。Flink 在窗口支持上的功能比 Storm 更加强大,API 更 加完善,但是我们同时也想了解在窗口统计这个常用场景下两个框架的性能。
精确计算场景(即消息投递语义为“恰好一次”)
Storm 仅能保证“至多一次” (At Most Once) 和“至少一次” (At Least Once) 的消息投递语义, 即可能存在重复发送的情况。有很多业务场景对数据的精确性要求较高,希望消息投递不重不 漏。Flink 支持“恰好一次” (Exactly Once) 的语义,但是在限定的资源条件下,更加严格的精 确度要求可能带来更高的代价,从而影响性能。因此,我们测试了在不同消息投递语义下两个 框架的性能,希望为精确计算场景的资源规划提供数据参考。
2.2 性能指标
- 吞吐量(Throughput)
- 单位时间内由计算框架成功地传送数据的数量,本次测试吞吐量的单位为:条/秒。
- 反映了系统的负载能力,在相应的资源条件下,单位时间内系统能处理多少数据。 •
- 吞吐量常用于资源规划,同时也用于协助分析系统性能瓶颈,从而进行相应的资源调整以 保证系统能达到用户所要求的处理能力。假设商家每小时能做二十份午餐(吞吐量 20 份/ 小时),一个外卖小哥每小时只能送两份(吞吐量 2 份/小时),这个系统的瓶颈就在小哥配 送这个环节,可以给该商家安排十个外卖小哥配送。
- 延迟(Latency)
- 数据从进入系统到流出系统所用的时间,本次测试延迟的单位为:毫秒。
- 反映了系统处理的实时性。
- 金融交易分析等大量实时计算业务对延迟有较高要求,延迟越低,数据实时性越强。
- 假设商家做一份午餐需要 5 分钟,小哥配送需要 25 分钟,这个流程中用户感受到了 30 分钟的延迟。如果更换配送方案后延迟变成了 60 分钟,等送到了饭菜都凉了,这个新的方案就是无法接受的。
3.测试环境
为 Storm 和 Flink 分别搭建由 1 台主节点和 2 台从节点构成的 Standalone 集群进行本次测试。其中为了观察 Flink 在实际生产环境中的性能,对于部分测内容也进行了 on Yarn 环境的测试。
3.1 集群参数
参数项 | 参数值 |
---|---|
CPU | QEMU Virtual CPU version 1.1.2 2.6GHz |
Core | 8 |
Memory | 16GB |
Disk | 500G |
OS | CentOS release 6.5 (Final) |
3.2 框架参数
参数项 | Storm 配置 | Flink 配置 |
---|---|---|
Version | Storm 1.1.0-mt002 | Flink 1.3.0 |
Master Memory | 2600M | 2600M |
Slave Memory | 1600M * 16 | 12800M * 2 |
Parallelism | 2 supervisor 16 worker |
2 Task Manager 16 Task slots |
4.测试方法
4.1 测试流程
数据生产
Data Generator 按特定速率生成数据,带上自增的 id 和 eventTime 时间戳写入 Kafka 的一个 Topic(Topic Data)。
数据处理
Storm Task 和 Flink Task (每个测试用例不同)从 Kafka Topic Data 相同的 Offset 开始消费, 并将结果及相应 inTime、outTime 时间戳分别写入两个 Topic(Topic Storm 和 Topic Flink)中。
指标统计
Metrics Collector 按 outTime 的时间窗口从这两个 Topic 中统计测试指标,每五分钟将相应的 指标写入 MySQL 表中。
Metrics Collector 按 outTime 取五分钟的滚动时间窗口,计算五分钟的平均吞吐(输出数据的 条数)、五分钟内的延迟(outTime - eventTime 或 outTime - inTime)的中位数及 99 线等指标, 写入 MySQL 相应的数据表中。最后对 MySQL 表中的吞吐计算均值,延迟中位数及延迟 99 线 选取中位数,绘制图像并分析。
4.2 默认参数
- Storm 和 Flink 默认均为At Least Once语义。
Storm 开启 ACK,ACKer 数量为 1。
Flink 的 Checkpoint 时间间隔为 30 秒,默认 StateBackend 为 Memory。
保证 Kafka 不是性能瓶颈,尽可能排除 Kafka 对测试结果的影响。
测试延迟时数据生产速率小于数据处理能力,假设数据被写入 Kafka 后立刻被读取,即 eventTime 等于数据进入系统的时间。
测试吞吐量时从 Kafka Topic 的最旧开始读取,假设该 Topic 中的测试数据量充足。
4.3 测试用例
Identity
Identity 用例主要模拟“输入-输出”简单处理场景,反映两个框架本身的性能。
输入数据为“msgId, eventTime”,其中 eventTime 视为数据生成时间。单条输入数据约 20 B。
进入作业处理流程时记录 inTime,作业处理完成后(准备输出时)记录 outTime。
作业从 Kafka Topic Data 中读取数据后,在字符串末尾追加时间戳,然后直接输出到 Kafka。
输出数据为“msgId, eventTime, inTime, outTime”。单条输出数据约 50 B。
Sleep
- Sleep 用例主要模拟用户作业耗时较长的场景,反映复杂用户逻辑对框架差异的削弱,比较 两个框架的调度性能。
- 输入数据和输出数据均与 Identity 相同。
- 读入数据后,等待一定时长(1 ms)后在字符串末尾追加时间戳后输出
Windowed Word Count
- Windowed Word Count 用例主要模拟窗口统计场景,反映两个框架在进行窗口统计时性能 的差异。
- 此外,还用其进行了精确计算场景的测试,反映 Flink 恰好一次投递的性能。
- 输入为 JSON 格式,包含 msgId、eventTime 和一个由若干单词组成的句子,单词之间由空 格分隔。单条输入数据约 150 B。
- 读入数据后解析 JSON,然后将句子分割为相应单词,带 eventTime 和 inTime 时间戳发给 CountWindow 进行单词计数,同时记录一个窗口中最大最小的 eventTime 和 inTime,最后 带 outTime 时间戳输出到 Kafka 相应的 Topic。
- Spout/Source 及 OutputBolt/Output/Sink 并发度恒为 1,增大并发度时仅增大 JSONParser、 CountWindow 的并发度。
- 由于 Storm 对 window 的支持较弱,CountWindow 使用一个 HashMap 手动实现,Flink 用了原生的 CountWindow 和相应的 Reduce 函数。
5.测试结果
5.1 Identity 单线程吞吐量
- 上图中蓝色柱形为单线程 Storm 作业的吞吐,橙色柱形为单线程 Flink 作业的吞吐。
- Identity 逻辑下,Storm 单线程吞吐为8.7万条/秒,Flink 单线程吞吐可达35万条/秒。
- 当 Kafka Data 的 Partition 数为 1 时,Flink 的吞吐约为 Storm 的 3.2 倍;当其 Partition 数为 8 时,Flink 的吞吐约为 Storm 的 4.6 倍。
- 由此可以看出,Flink 吞吐约为 Storm 的 3-5 倍。
5.2 Identity 单线程作业延迟
- 采用 outTime - eventTime 作为延迟,图中蓝色折线为 Storm,橙色折线为 Flink。虚线为 99 线,实线为中位数。
- 从图中可以看出随着数据量逐渐增大,Identity 的延迟逐渐增大。其中 99 线的增大速度比中位数快,Storm 的 增大速度比 Flink 快。
- 其中 QPS 在 80000 以上的测试数据超过了 Storm 单线程的吞吐能力,无法对 Storm 进 行测试,只有 Flink 的曲线。
- 对比折线最右端的数据可以看出,Storm QPS 接近吞吐时延迟中位数约 100 毫秒,99 线约 700 毫秒,Flink 中位数约 50 毫秒,99 线约 300 毫秒。Flink 在满吞吐时的延迟约为 Storm 的一半。
5.3 Sleep 吞吐量
- 从图中可以看出,Sleep 1 毫秒时,Storm 和 Flink 单线程的吞吐均在 900 条/秒左右,且随着并发增大基本呈线性增大。
- 对比蓝色和橙色的柱形可以发现,此时两个框架的吞吐能力基本一致。
5.4 Sleep 单线程作业延迟(中位数)
- 依然采用 outTime - eventTime 作为延迟,从图中可以看出,Sleep 1 毫秒时,Flink 的延迟仍低于 Storm。
5.5 Windowed Word Count 单线程吞吐量
- 单线程执行大小为 10 的计数窗口,吞吐量统计如图。
- 从图中可以看出,Storm 吞吐约为 1.2 万条/秒,Flink Standalone 约为 4.3 万条/秒。Flink 吞吐依然为 Storm 的 3 倍以上。
5.6 Windowed Word Count Flink At Least Once 与 Exactly Once 吞吐量对比
由于同一算子的多个并行任务处理速度可能不同,在上游算子中不同快照里的内容,经过中间并行算子的处理,到达下游算子时可能被计入同一个快照中。这样一来,这部分数据会 被重复处理。因此,Flink 在 Exactly Once 语义下需要进行对齐,即当前最早的快照中所有 数据处理完之前,属于下一个快照的数据不进行处理,而是在缓存区等待。当前测试用例 中,在 JSON Parser 和 CountWindow、CountWindow 和 Output 之间均需要进行对齐,有 一定消耗。为体现出对齐场景,Source/Output/Sink 并发度的并发度仍为 1,提高了 JSONParser/CountWindow 的并发度。具体流程细节参见前文 Windowed Word Count 流程图。
上图中橙色柱形为 At Least Once 的吞吐量,黄色柱形为 Exactly Once 的吞吐量。对比两者可以看出,在当前并发条件下,Exactly Once 的吞吐较 At Least Once 而言下降了 6.3%
5.7 Windowed Word Count Storm At Least Once 与 At Most Once 吞吐量对比
- Storm 将 ACKer 数量设置为零后,每条消息在发送时就自动 ACK,不再等待 Bolt 的 ACK, 也不再重发消息,为 At Most Once 语义。
- 上图中蓝色柱形为 At Least Once 的吞吐量,浅蓝色柱形为 At Most Once 的吞吐量。对比两者可以看出,在当前并发条件下,At Most Once 语义下的吞吐较 At Least Once 而言提高了 16.8%
5.8 Windowed Word Count 单线程作业延迟
Identity 和 Sleep 观测的都是 outTime - eventTime,因为作业处理时间较短或 Thread.sleep() 精度不高,outTime - inTime 为零或没有比较意义;Windowed Word Count 中可以有效测得 outTime - inTime 的数值,将其与 outTime - eventTime 画在同一张图上,其中 outTime - eventTime 为虚线,outTime - InTime 为实线。 • 观察橙色的两条折线可以发现,Flink 用两种方式统计的延迟都维持在较低水平;观察两条 蓝色的曲线可以发现,Storm 的 outTime - inTime 较低,outTime - eventTime 一直较高,即 inTime 和 eventTime 之间的差值一直较大,可能与 Storm 和 Flink 的数据读入方式有关。
蓝色折线表明 Storm 的延迟随数据量的增大而增大,而橙色折线表明 Flink 的延迟随着数 据量的增大而减小(此处未测至 Flink 吞吐量,接近吞吐时 Flink 延迟依然会上升)。 • 即使仅关注 outTime - inTime(即图中实线部分),依然可以发现,当 QPS 逐渐增大的时候, Flink 在延迟上的优势开始体现出来。
5.9 Windowed Word Count Flink At Least Once 与 Exactly Once 延迟对比
- 图中黄色为 99 线,橙色为中位数,虚线为 At Least Once,实线为 Exactly Once。图中相应 颜色的虚实曲线都基本重合,可以看出 Flink Exactly Once 的延迟中位数曲线与 At Least Once 基本贴合,在延迟上性能没有太大差异。
5.10 Windowed Word Count Storm At Least Once 与 At Most Once 延迟对比
- 图中蓝色为 99 线,浅蓝色为中位数,虚线为 At Least Once,实线为 At Most Once。QPS 在 4000 及以前的时候,虚线实线基本重合;QPS 在 6000 时两者已有差异,虚线略高;QPS 接近 8000 时,已超过 At Least Once 语义下 Storm 的吞吐,因此只有实线上的点。 • 可以看出,QPS 较低时 Storm At Most Once 与 At Least Once 的延迟观察不到差异,随着 QPS 增大差异开始增大,At Most Once 的延迟较低。
5.11 Windowed Word Count Flink 不同 StateBackends 吞吐量对比
- Flink 支持 Standalone 和 on Yarn 的集群部署模式,同时支持 Memory、FileSystem、RocksDB 三种状态存储后端(StateBackends)。由于线上作业需要,测试了这三种 StateBackends 在 两种集群部署模式上的性能差异。其中,Standalone 时的存储路径为 JobManager 上的一 个文件目录,on Yarn 时存储路径为 HDFS 上一个文件目录。
- 对比三组柱形可以发现,使用 FileSystem 和 Memory 的吞吐差异不大,使用 RocksDB 的 吞吐仅其余两者的十分之一左右。
- 对比两种颜色可以发现,Standalone 和 on Yarn 的总体差异不大,使用 FileSystem 和 Memory 时 on Yarn 模式下吞吐稍高,使用 RocksDB 时 Standalone 模式下的吞吐稍高。
5.12 Windowed Word Count Flink 不同 StateBackends 延迟对比
使用 FileSystem 和 Memory 作为 Backends 时,延迟基本一致且较低。
使用 RocksDB 作为 Backends 时,延迟稍高,且由于吞吐较低,在达到吞吐瓶颈前的延迟陡增。其中 on Yarn 模式下吞吐更低,接近吞吐时的延迟更高。
6.结论及建议
6.1 框架本身性能
由 5.1、5.5 的测试结果可以看出,Storm 单线程吞吐约为 8.7 万条/秒,Flink 单线程吞吐 可达 35 万条/秒。Flink 吞吐约为 Storm 的 3-5 倍。
由 5.2、5.8 的测试结果可以看出,Storm QPS 接近吞吐时延迟(含 Kafka 读写时间)中位 数约 100 毫秒,99 线约 700 毫秒,Flink 中位数约 50 毫秒,99 线约 300 毫秒。Flink 在 满吞吐时的延迟约为 Storm 的一半,且随着 QPS 逐渐增大,Flink 在延迟上的优势开始体现出来。
综上可得,Flink 框架本身性能优于 Storm。
6.2 复杂用户逻辑对框架差异的削弱
对比 5.1 和 5.3、5.2 和 5.4 的测试结果可以发现,单个 Bolt Sleep 时长达到 1 毫秒时, Flink 的延迟仍低于 Storm,但吞吐优势已基本无法体现。
因此,用户逻辑越复杂,本身耗时越长,针对该逻辑的测试体现出来的框架的差异越小。
6.3 不同消息投递语义的差异
- 由 5.6、5.7、5.9、5.10 的测试结果可以看出,Flink Exactly Once 的吞吐较 At Least Once 而 言下降 6.3%,延迟差异不大;Storm At Most Once 语义下的吞吐较 At Least Once 提升 16.8%,延迟稍有下降。
- 由于 Storm 会对每条消息进行 ACK,Flink 是基于一批消息做的检查点,不同的实现原理导 致两者在 At Least Once 语义的花费差异较大,从而影响了性能。而 Flink 实现 Exactly Once 语义仅增加了对齐操作,因此在算子并发量不大、没有出现慢节点的情况下对 Flink 性能的 影响不大。Storm At Most Once 语义下的性能仍然低于 Flink。
6.4 Flink 状态存储后端选择
• Flink 提供了内存、文件系统、RocksDB 三种 StateBackends,结合 5.11、5.12 的测试结果, 三者的对比如下:
StateBackend 过程状态存储 检查点存储 吞吐 推荐使用场景 Memory TM Memory JM Memory 高(3-5 倍 Storm) 调试、无状态或对数据是否 丢失重复无要求 FileSystem TM Memory FS/HDFS 高(3-5 倍 Storm) 普通状态、窗口、KV 结构 (建议作为默认 Backend)
RocksDB RocksDB on TM FS/HDFS 低(0.3-0.5 倍 Storm) 超大状态、超长窗口、大型 KV 结构
6.5 推荐使用 Flink 的场景
综合上述测试结果,以下实时计算场景建议考虑使用 Flink 框架进行计算:
要求消息投递语义为Exactly Once的场景;
数据量较大,要求高吞吐低延迟的场景;
需要进行状态管理或窗口统计的场景。
7.展望
本次测试中尚有一些内容没有进行更加深入的测试,有待后续测试补充。例如:
Exactly Once 在并发量增大的时候是否吞吐会明显下降?
用户耗时到 1ms 时框架的差异已经不再明显(Thread.sleep() 的精度只能到毫秒),用 户耗时在什么范围内 Flink 的优势依然能体现出来?
本次测试仅观察了吞吐量和延迟两项指标,对于系统的可靠性、可扩展性等重要的性能指 标没有在统计数据层面进行关注,有待后续补充。
Flink 使用 RocksDBStateBackend 时的吞吐较低,有待进一步探索和优化。
关于 Flink 的更高级 API,如 Table API & SQL 及 CEP 等,需要进一步了解和完善。
8.参考内容
分布式流处理框架——功能对比和性能评估
intel-hadoop/HiBench: HiBench is a big data benchmark suite
Yahoo的流计算引擎基准测试
Extending the Yahoo! Streaming Benchmark
本文选自《不仅仅是流计算 Apache Flink实践》
更多Flink博文:
更多Flink原理知识:
更多实时计算,Flink,Kafka等相关技术博文,欢迎关注实时流式计算:
Storm VS Flink ——性能对比的更多相关文章
- Flink,Storm,SparkStreaming性能对比
Yahoo 的 Storm 团队曾发表了一篇博客文章 ,并在其中展示了 Storm.Flink 和 Spark Streaming 的性能测试结果.该测试对于业界而言极 具价值,因为它是流处理领域的第 ...
- Spark技术的总结 以及同storm,Flink技术的对比
spark总结 1.Spark的特点: 高可伸缩性 高容错 基于内存计算 支持多种语言:java,scala,python,R 高质量的算法,比MapReduce快100倍 多种调度引擎:可以运行于Y ...
- hadoop之Spark强有力竞争者Flink,Spark与Flink:对比与分析
hadoop之Spark强有力竞争者Flink,Spark与Flink:对比与分析 Spark是一种快速.通用的计算集群系统,Spark提出的最主要抽象概念是弹性分布式数据集(RDD),它是一个元素集 ...
- [原] KVM 环境下MySQL性能对比
KVM 环境下MySQL性能对比 标签(空格分隔): Cloud2.0 [TOC] 测试目的 对比MySQL在物理机和KVM环境下性能情况 压测标准 压测遵循单一变量原则,所有的对比都是只改变一个变量 ...
- 浅谈C++之冒泡排序、希尔排序、快速排序、插入排序、堆排序、基数排序性能对比分析之后续补充说明(有图有真相)
如果你觉得我的有些话有点唐突,你不理解可以想看看前一篇<C++之冒泡排序.希尔排序.快速排序.插入排序.堆排序.基数排序性能对比分析>. 这几天闲着没事就写了一篇<C++之冒泡排序. ...
- Java--Stream,NIO ByteBuffer,NIO MappedByteBuffer性能对比
目前Java中最IO有多种文件读取的方法,本文章对比Stream,NIO ByteBuffer,NIO MappedByteBuffer的性能,让我们知道到底怎么能写出性能高的文件读取代码. pack ...
- C正则库做DNS域名验证时的性能对比
C正则库做DNS域名验证时的性能对比 本文对C的正则库regex和pcre在做域名验证的场景下做评测. 验证DNS域名的正则表达式为: "^[0-9a-zA-Z_-]+(\\.[0-9a ...
- 开发语言性能对比,C++、Java、Python、LUA、TCC
一直想做开发语言性能对比,刚好有时间都做了给大家参考一下, 编译类:C++和Java表现还不错 脚本类:TCC脚本动态运行C语言,性能比其他脚本快好多... 想玩TCC的同学下载测试包,TCC目录下修 ...
- php+mysql预查询prepare 与普通查询的性能对比
prepare可以解决大访问量的网站给数据库服务器所带来的负载和开销,本文章通过实例向大家介绍预查询prepare与普通查询的性能对比,需要的朋友可以参考一下. 实例代码如下: <?php cl ...
随机推荐
- C#使用LitJson解析Json数据
//接受MQ服务器返回的值 private void jieshou(string zhiling, string can1, string can2, string can3, string can ...
- Java枚举类型 enum
定义 An enum type is a special data type that enables for a variable to be a set of predefined constan ...
- Vue系列:wangEditor富文本编辑器简单例子
考虑到该富文本编辑器可能会在后续项目中继续使用,因此单独将其做成一个组件,把wangeditor作为组件的形式使用. 以下是参考代码 子组件部分: 父组件引用子组件: 以上就是 wangEditor ...
- js学习之数据类型
js学习之数据类型 基础类型:number string boolean null undefined 引用类型:object array function undefined值是派生自null值的( ...
- python3从入门到精通之数据类型,布尔类型介绍
数据的类型 为了更充分的利用内存空间以及更有效率的管理内存,变量是有不同的类型的. Number(数字) int(整型) float(浮点型) complex(复数) bool(布尔) String( ...
- redpwnctf-web-blueprint-javascript 原型链污染学习总结
前几天看了redpwn的一道web题,node.js的web,涉及知识点是javascript 原型链污染,以前没咋接触过js,并且这个洞貌似也比较新,因此记录一下学习过程 1.本机node.js环境 ...
- spring-boot-plus 常见问题解决 FAQ(十二)
spring-boot-plus 常见问题解决 FAQ 编译错误问题 log日志编译错误 编译提示log.info等日志错误 解决 检查是否安装lombok插件 idea安装lombok eclips ...
- [luogu4886] 快递员(点分治,树链剖分,lca)
dwq推的火题啊. 这题应该不算是点分治,但是用的点分治的思想. 每次找重心,算出每一对询问的答案找到答案最大值,考虑移动答案点,使得最大值减小. 由于这些点一定不能在u的两颗不同的子树里,否则你怎么 ...
- iOS 11 变化
首先我是开发者,更关心对技术的影响,我又需要关注.学习哪些技术,猫神的文章:http://www.cocoachina.com/ios/20170607/19457.html 介绍了 ******** ...
- SSH开发模式——Struts2(第二小节)
上一小节已经学会了如何去搭建Struts2的开发环境,该篇博客我们继续深入Struts2,了解Struts2框架的拦截器. 首先对我们在web.xml文件配置的过滤器进行一个源码的分析. 在Strut ...