http://acm.hdu.edu.cn/showproblem.php?pid=1007

题意:平面上有n个点,问最近的两个点之间的距离的一半是多少。

思路:用分治做。把整体分为左右两个部分,那么有三种情况:最近的两个点都在左边,最近的两个点都在右边和最近的两个点一个在左边一个在右边。对于第一第二种情况,直接递归处理,分解成子问题就好了,主要是要处理第三种情况。最暴力的做法是O(n^2)的扫,这样肯定会TLE。那么要作一些优化。首先我们先递归处理得到第一种和第二种情况的答案的较小值,然后用这个答案去优化,即如果x上,某个点距离中点的距离在ans内的话,那么这个点是可能可以得到更优答案的,如果距离大于ans,那么肯定不能得到更优的答案。将这些点存起来,然后对y进行排序,暴力O(n^2)扫这些存起来的点,和第一个优化类似,如果当前两点之间y的距离大于等于ans,那么后面的答案肯定是大于ans的,直接break跳出去。

 #include <cstring>
#include <cstdio>
#include <algorithm>
#include <cmath>
using namespace std;
#define N 100010
#define INF 0x3f3f3f3f
struct node {
double x, y;
} p[N], tmp[N]; double min(double a, double b) { return a < b ? a : b; } bool cmpx(const node &a, const node &b) { return a.x < b.x; } bool cmpy(const node &a, const node &b) { return a.y < b.y; } double cal(node a, node b) { return sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y)); } double solve(int l, int r) {
if(r - l == ) return cal(p[r], p[l]);
if(r - l == ) return min(cal(p[l], p[r]), min(cal(p[r], p[r-]), cal(p[r-], p[l])));
int mid = (l + r) >> , cnt = ;
double ans = min(solve(l, mid), solve(mid + , r));
for(int i = l; i <= r; i++)
if(p[i].x - ans <= p[mid].x && p[i].x + ans >= p[mid].x)
tmp[++cnt] = p[i];
sort(tmp + , tmp + + cnt, cmpy);
for(int i = ; i <= cnt; i++)
for(int j = i + ; j <= cnt; j++)
if(tmp[j].y - tmp[i].y >= ans) break;
else ans = min(ans, cal(tmp[i], tmp[j]));
return ans;
} int main() {
int n;
while(scanf("%d", &n), n) {
for(int i = ; i <= n; i++) scanf("%lf%lf", &p[i].x, &p[i].y);
sort(p + , p + + n, cmpx);
printf("%.2f\n", solve(, n) / 2.0);
}
return ;
}

HDU 1007:Quoit Design(分治求最近点对)的更多相关文章

  1. hdu 1007 Quoit Design 分治求最近点对

    Quoit Design Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tot ...

  2. HDU 1007 Quoit Design(经典最近点对问题)

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1007 Quoit Design Time Limit: 10000/5000 MS (Java/Oth ...

  3. HDU 1007 Quoit Design 平面内最近点对

    http://acm.hdu.edu.cn/showproblem.php?pid=1007 上半年在人人上看到过这个题,当时就知道用分治但是没有仔细想... 今年多校又出了这个...于是学习了一下平 ...

  4. HDU 1007 Quoit Design(计算几何の最近点对)

    Problem Description Have you ever played quoit in a playground? Quoit is a game in which flat rings ...

  5. hdu 1007 Quoit Design(平面最近点对)

    题意:求平面最近点对之间的距离 解:首先可以想到枚举的方法,枚举i,枚举j算点i和点j之间的距离,时间复杂度O(n2). 如果采用分治的思想,如果我们知道左半边点对答案d1,和右半边点的答案d2,如何 ...

  6. HDU 1007 Quoit Design【计算几何/分治/最近点对】

    Quoit Design Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tot ...

  7. hdu 1007 Quoit Design(分治法求最近点对)

    大致题意:给N个点,求最近点对的距离 d :输出:r = d/2. // Time 2093 ms; Memory 1812 K #include<iostream> #include&l ...

  8. hdu 1007 Quoit Design (最近点对问题)

    Quoit Design Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tot ...

  9. HDU 1007 Quoit Design(二分+浮点数精度控制)

    Quoit Design Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) To ...

  10. (hdu1007)Quoit Design,求最近点对

    Problem Description Have you ever played quoit in a playground? Quoit is a game in which flat rings ...

随机推荐

  1. Debian7离线升级bash漏洞—然后修复方法

    ### 昨天还说的传说要又一次出补丁,今天就都出来了.基本操作一致就是測试结果不一样.继续修复 Debian7 wheezy版本号的bash漏洞,例如以下操作: 1.測试是否须要升级 # env x= ...

  2. Google CFO 辞职信

    Google CFO 辞职信   After nearly 7 years as CFO, I will be retiring from Google to spend more time with ...

  3. .net core 允许跨域

    在Startup的ConfigureServices()中添加services.AddCors()在Startup的Configure()中添加app.UseCors(); 保证其在app.UseMv ...

  4. linq to entity GroupBy多个字段

    var items = _voteRecordRepository.GetAll() .Where(x => programIds.Contains(x.ProgrammeId)) .Group ...

  5. php 二维数组相同值 相加

    array(3) { [0]=> array(2) { ["sourcesid"]=> int(1) ["addusernum"]=> str ...

  6. 写给非专业人士看的 *** 简介(同时也解释了GFW )

    写给非专业人士看的 *** 简介 这个文章来源于一个朋友在***的过程中,搞不清楚 *** 的配置问题,在这里我想按照我对 *** 的理解简单梳理一下,以便一些非专业人士也能了解 long long ...

  7. 向github提交本地项目

    首先你需要一个github账号,所有还没有的话先去注册吧! https://github.com/ 我们使用git需要先安装git工具,这里给出下载地址,下载后一路直接安装即可: https://gi ...

  8. PowerShell将Windows store应用程序安装为开发者模式

    原文: PowerShell将Windows store应用程序安装为开发者模式 在本地部署Windows 商店应用程序时,我们会遇到Add-AppDevPackage.ps1脚本,这个脚本和所在安装 ...

  9. Hadoop Streaming框架学习(二)

    1.常用Streaming命令介绍 使用下面的命令运行Streaming MapReduce程序: 1: $HADOOP_HOME/bin/hadoop/hadoop streaming args 其 ...

  10. Windows下libevent C++封装类实现

    题记 windows平台下对于服务器高并发的网络模型选型中,使用libevent是个不错的选择. 本文的背景基于:国内博客对于libevent大多介绍linux实现,大多是c语言的实现,Windows ...