(本文内容和图片来自林轩田老师《机器学习技法》)

1. 核技巧引入

  如果要用SVM来做非线性的分类,我们采用的方法是将原来的特征空间映射到另一个更高维的空间,在这个更高维的空间做线性的SVM。即:

在这里我们计算这个向量内积有两种方法:一种是对Φ(x)给出明确的定义,分别算出两个高维向量,再做内积;另一种就是利用核函数,直接算出高维的内积。我们以一个例子来看这两种方法,定义一个二次转化:

我们可以直接计算出内积:

可以看出,最后的结果能够用x和x一撇表示出来,这就是一个核函数:

在这里,我们是给出了一个Φ(x)来推出它的核函数。但事实上,我们可以直接给一个核函数(只要我们能证明它是一个核函数),而不用知道它对应的Φ(x)是什么。这样做的一个好处就是我们不用求出高维向量在做内积,可以通过形式简单的核函数直接计算内积,计算复杂度降低了,到后面我们用核函数甚至可以引入无限维的转换。

我们的b值就是:

最终得到的分离超平面就是:

可以看出,不管是求解的优化问题还是最后的模型,我们都可以用核函数来表示。(这里我们不用知道w是什么)

因此,通过核函数的引入,我们相当于隐式的在高维空间进行线性SVM,而不用知道低维到高维的具体映射是什么。

关于使用核函数后的时间复杂度的优化,如下:

2 .多项式核函数

首先对一个常用的核函数——二次多项式核函数做导出:

对于不同的二次核,我们产生的决策边界是不同的:

之后我们可以推广出通用的多项式核函数:

3. 高斯核函数

我们可以证明高斯核函数是一个核函数,并且它对应一个到无限维的映射:

更通用的高斯核函数为:

高斯核SVM的分离超平面就是:

可以看出,模型是一堆中心在支撑向量上的高斯函数的线性组合,因此高斯核SVM也被称为RBF。

总结一下,SVM可以做的事情:

首先是有分离超平面,然后引入了的高维度转换(使得我们可以做非线性分类),然后使用了核技巧(使得我们降低了复杂度并且可以引入无限维的转换),在这些基础上,SVM有它的large-margin机制来确保我们的模型复杂度比较小(泛化能力)。

最后存储模型的时候,我们不用存储高维度的w,存储的是支持向量以及它们对应的阿尔法值。

接下来我们看看不同的高斯核svm产生的边界:

因此,即使SVM有large-margin的保护,但是还是要慎选伽马的值,否则仍然会过拟合。

4.几种核函数的比较

《机器学习技法》---核型SVM的更多相关文章

  1. Coursera台大机器学习技法课程笔记01-linear hard SVM

    极其淡腾的一学期终于过去了,暑假打算学下台大的这门机器学习技法. 第一课是对SVM的介绍,虽然之前也学过,但听了一次感觉还是很有收获的.这位博主总结了个大概,具体细节还是 要听课:http://www ...

  2. 《机器学习技法》---线性SVM

    (本文内容和图片来自林轩田老师<机器学习技法>) 1. 线性SVM的推导 1.1 形象理解为什么要使用间隔最大化 容忍更多的测量误差,更加的robust.间隔越大,噪声容忍度越大: 1.2 ...

  3. 机器学习技法笔记(2)-Linear SVM

    从这一节开始学习机器学习技法课程中的SVM, 这一节主要介绍标准形式的SVM: Linear SVM 引入SVM 首先回顾Percentron Learning Algrithm(感知器算法PLA)是 ...

  4. 核型SVM

    (本文内容和图片来自林轩田老师<机器学习技法>) 1. 核技巧引入 如果要用SVM来做非线性的分类,我们采用的方法是将原来的特征空间映射到另一个更高维的空间,在这个更高维的空间做线性的SV ...

  5. 机器学习技法课之Aggregation模型

    Courses上台湾大学林轩田老师的机器学习技法课之Aggregation 模型学习笔记. 混合(blending) 本笔记是Course上台湾大学林轩田老师的<机器学习技法课>的学习笔记 ...

  6. 机器学习技法之Aggregation方法总结:Blending、Learning(Bagging、AdaBoost、Decision Tree)及其aggregation of aggregation

    本文主要基于台大林轩田老师的机器学习技法课程中关于使用融合(aggregation)方法获得更好性能的g的一个总结.包含从静态的融合方法blending(已经有了一堆的g,通过uniform:voti ...

  7. 机器学习——支持向量机(SVM)

    机器学习--支持向量机(SVM) 支持向量机(Support Vector Machine)广泛地应用于分类问题,回归问题和异常检测问题.支持向量机一个很好的性质是其与凸优化问题相对应,局部最优解就是 ...

  8. 遵循统一的机器学习框架理解SVM

    遵循统一的机器学习框架理解SVM 一.前言 我的博客仅记录我的观点和思考过程.欢迎大家指出我思考的盲点,更希望大家能有自己的理解. 本文参考了李宏毅教授讲解SVM的课程和李航大大的统计学习方法. 二. ...

  9. Python机器学习笔记:SVM(1)——SVM概述

    前言 整理SVM(support vector machine)的笔记是一个非常麻烦的事情,一方面这个东西本来就不好理解,要深入学习需要花费大量的时间和精力,另一方面我本身也是个初学者,整理起来难免思 ...

随机推荐

  1. (ps2018)Adobe Photoshop CC 2018 中文版破解版

    ps2018新功能 1.更紧密连接的 Photoshop.全新的智慧型锐利化. 2.智慧型增加取样.内含 Extended 功能.Camera RAW 8 和图层支援 3.可编辑的圆角矩形.多重形状和 ...

  2. Drools规则引擎-memberOf操作

    场景 规则引擎技术讨论2群(715840230)有同学提出疑问,memberOf的使用过程中如果,memberOf之后的参数不是集合也不是数组,而是格式如"1,2,3,4"的字符串 ...

  3. 使jira支持reopen率的统计

    jira本身并不能统计bug的reopen率,虽然bug工作流程中有reopen节点,只能借助第三方插件来处理. 插件名称:Enhancer Plugin for JIRA,此插件支持自定义字段.自定 ...

  4. MySQL Explain查看执行计划

    这篇博客写的还是蛮全的 http://www.cnblogs.com/songwenjie/p/9409852.html 在执行SQL的时候,经常有些SQL未正确使用到索引,导致程序变慢,通过使用ex ...

  5. 【HDU - 3533】Escape(bfs)

    Escape  Descriptions: 一个人从(0,0)跑到(n,m),只有k点能量,一秒消耗一点,在图中有k个炮塔,给出炮塔的射击方向c,射击间隔t,子弹速度v,坐标x,y问这个人能不能安全到 ...

  6. local class incompatible: stream classdesc serialVersionUID = 4125096758372084309, local class serialVersionUID = 7725746634795906143

    local class incompatible: stream classdesc serialVersionUID = 4125096758372084309, local class seria ...

  7. python迭代器-迭代器取值-for循环-生成器-yield-生成器表达式-常用内置方法-面向过程编程-05

    迭代器 迭代器 迭代: # 更新换代(其实也是重复)的过程,每一次的迭代都必须基于上一次的结果(上一次与这一次之间必须是有关系的) 迭代器: # 迭代取值的工具 为什么用迭代器: # 迭代器提供了一种 ...

  8. Spring Cloud Config 实现配置中心,看这一篇就够了

    Spring Cloud Config 是 Spring Cloud 家族中最早的配置中心,虽然后来又发布了 Consul 可以代替配置中心功能,但是 Config 依然适用于 Spring Clou ...

  9. 第2个C# Winform实例,寻找三角形的位置

    这里,在第一个例子的基础上,稍微做修改,达到最终定位三角形位置的目的. 先在网络上找一张包含有三角形的图片,我们这里使用一张有三个三角形和一些标记的图片来处理. 原图: 先贴结果图片:左侧,中间,右侧 ...

  10. linux初学者-文件权限

    linux初学者-文件权限 lunix系统都是以文件的形式存在,自然而然的就会要求不同的用户拥有不同的权限,这也是系统能够运行的根本保证,下文将对文件的权限管理进行简要的介绍. 1.文件属性的查看 - ...