没有多少人用莫队做吗?

蒟蒻水一波莫队

这是一道树上莫队好题。

时间复杂度(\(n\sqrt{n}logn\))

蒟蒻过菜,不会去掉logn的做法qaq

思路很简单:

1.dfs跑一下树上点的dfs序。

2.将树上点按dfs序进行\(\sqrt{n}\) 分块。

3.对每个点按左端点的块序号和右端点的大小排序。

inline int cmp(Node aa,Node bb)
{
return aa.ls==bb.ls?aa.r<bb.r:aa.ls<bb.ls;
}

4.开始莫队,用num[x]数组统计出现x次的颜色的序号和。转移时将原先的减去,再加上现在的。

inline void add(int x)
{
int xx=coll[x];
if(num[xx])
add(num[xx],-xx,1);
num[xx]++;
add(num[xx],xx,1);
}
inline void del(int x)
{
int xx=coll[x];
add(num[xx],-xx,1);
num[xx]--;
if(num[xx])
add(num[xx],xx,1);
}

5.将num用线段树维护最大值。

6.查找num[x]中使num[x]!=0的x最大值,并num[x]为答案。(用线段树维护)

p.s.程序理论上时间复杂度爆了,但是经过我在考场上拍的时候没有多少数据可以卡掉,并且可以卡掉这个程序的数据第二次试的时候就不会爆,所以这个程序只要评测机高兴,就不会挂。

上代码(预警,代码中含有大量无用数组)

码长:3000B

当当当当

#pragma GCC optimize(2)
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define ll long long
using namespace std;
inline ll read()
{
ll f=0,x=1;char ch=getchar();
while(ch<'0'||ch>'9')
{
if(ch=='-')x=-1;ch=getchar();
}
while(ch>='0'&&ch<='9')f=(f<<1)+(f<<3)+ch-'0',ch=getchar();
return f*x;
}
ll n,col[100009],siz,cnt=0,head[100009],dfn[100009],
l[100009],r[100009],num[100009],ans=0,maxx=0,anss[100009],
coll[100009];
struct edge
{
ll to,nxt;
}e[200009];
struct Node
{
ll l,r,id,bh,col,ls,rs;
}a[100009];
struct segtree
{
ll l,r,w;
}tree[400009];
inline void adde(int a,int b)
{
cnt++;
e[cnt].nxt=head[a];
e[cnt].to=b;
head[a]=cnt;
}
inline void dfs(int x,int fa)
{
dfn[x]=++cnt;
l[cnt]=x;coll[cnt]=col[x];
a[cnt].id=x;a[cnt].l=cnt;a[cnt].col=col[x];
for(int i=head[x];~i;i=e[i].nxt){
int v=e[i].to;
if(v==fa)continue;
dfs(v,x);
}
r[x]=cnt;
a[dfn[x]].r=cnt;
}
inline int cmp(Node aa,Node bb)
{
return aa.ls==bb.ls?aa.r<bb.r:aa.ls<bb.ls;
}
inline void build(int l,int r,int p)
{
tree[p].l=l;tree[p].r=r;
if(l==r)
return ;
int mid=(l+r)>>1;
build(l,mid,p*2);build(mid+1,r,p*2+1);
}
inline void add(int x,int xx,int p)
{
if(tree[p].l==tree[p].r)
{
tree[p].w+=xx;
//printf("%d %d %d\n",tree[p].l,tree[p].r,tree[p].w);
return ;
}
int mid=(tree[p].l+tree[p].r)>>1;
if(x<=mid)add(x,xx,p*2);
else add(x,xx,p*2+1);
tree[p].w=tree[p*2].w+tree[p*2+1].w;
//printf("%d %d %d %d\n",tree[p].l,tree[p].r,tree[p].w,xx);
}
inline void add(int x)
{
int xx=coll[x];
//ans[num[xx]]-=x;
if(num[xx])
add(num[xx],-xx,1);
num[xx]++;
add(num[xx],xx,1);
//printf("!!!%d %d %d\n",x,xx,a[x].id);
//ans[num[xx]]+=x
//if(num[x]==maxx)ans+=x;
}
inline void del(int x)
{
int xx=coll[x];
add(num[xx],-xx,1);
num[xx]--;
//printf("!!!%d %d %d\n",x,xx,a[x].id);
if(num[xx])
add(num[xx],xx,1);
}
inline void find(int l,int r,int p)
{
if(ans)return ;
if(l<=tree[p].l&&r>=tree[p].r){
int mid=(tree[p].l+tree[p].r)>>1;
if(tree[p].l==tree[p].r){
ans=max(ans,tree[p].w);return ;
}
if(tree[p*2+1].w)find(l,r,p*2+1);
else if(tree[p*2].w)find(l,r,p*2);
return ;
}
int mid=(tree[p].l+tree[p].r)>>1;
if(r>mid)find(l,r,p*2+1);
if(l<=mid)find(l,r,p*2);
}
int main()
{
n=read();siz=sqrt(n);
build(1,n,1);
memset(head,-1,sizeof(head));
//printf("%d\n",n);
for(int i=1;i<=n;i++){
col[i]=read();
}
for(int i=1;i<=n-1;i++){
int a=read(),b=read();
adde(a,b);adde(b,a);
}
cnt=0;
dfs(1,1);
for(int i=1;i<=n;i++)
{
a[i].ls=(a[i].l+siz-1)/siz;
}
sort(a+1,a+n+1,cmp);
int l=1,r=0;
for(int i=1;i<=n;i++)
{
ans=0;
while(r<a[i].r)add(++r);
while(r>a[i].r)del(r--);
while(l<a[i].l)del(l++);
while(l>a[i].l)add(--l);
find(1,n,1);
anss[a[i].id]=ans;
//printf("ans %d %d %d %d\n",a[i].l,a[i].r,a[i].id,ans);
}
for(int i=1;i<=n;i++)printf("%lld ",anss[i]);
return 0;
}

题解 CF600E 【Lomsat gelral】的更多相关文章

  1. CF600E Lomsat gelral 和 CF741D Dokhtar-kosh paths

    Lomsat gelral 一棵以\(1\)为根的树有\(n\)个结点,每个结点都有一种颜色,每个颜色有一个编号,求树中每个子树的最多的颜色编号(若有数量一样的,则求编号和). \(n \le 10^ ...

  2. 【学习笔记/题解】树上启发式合并/CF600E Lomsat gelral

    题目戳我 \(\text{Solution:}\) 树上启发式合并,是对普通暴力的一种优化. 考虑本题,最暴力的做法显然是暴力统计每一次的子树,为了避免其他子树影响,每次统计完子树都需要清空其信息. ...

  3. CF600E Lomsat gelral 【线段树合并】

    题目链接 CF600E 题解 容易想到就是线段树合并,维护每个权值区间出现的最大值以及最大值位置之和即可 对于每个节点合并一下两个子节点的信息 要注意叶子节点信息的合并和非叶节点信息的合并是不一样的 ...

  4. CF600E Lomsat gelral (启发式合并)

    You are given a rooted tree with root in vertex 1. Each vertex is coloured in some colour. Let's cal ...

  5. CF600E Lomsat gelral (dfs序+莫队)

    题面 题解 看到网上写了很多DSU和线段树合并的题解,笔者第一次做也是用的线段树合并,但在原题赛的时候却怕线段树合并调不出来,于是就用了更好想更好调的莫队. 这里笔者就说说莫队怎么做吧. 我们可以通过 ...

  6. CF600E Lomsat gelral(dsu on tree)

    dsu on tree跟冰茶祭有什么关系啊喂 dsu on tree的模板题 思想与解题过程 类似树链剖分的思路 先统计轻儿子的贡献,再统计重儿子的贡献,得出当前节点的答案后再减去轻儿子对答案的贡献 ...

  7. CF600E:Lomsat gelral(线段树合并)

    Description 一棵树有n个结点,每个结点都是一种颜色,每个颜色有一个编号,求树中每个子树的最多的颜色编号的和. Input 第一行一个$n$.第二行$n$个数字是$c[i]$.后面$n-1$ ...

  8. [CF600E]Lomsat gelral

    题意翻译 一棵树有n个结点,每个结点都是一种颜色,每个颜色有一个编号,求树中每个子树的最多的颜色编号的和. 线段树合并板子题,没啥难度,注意开long long 不过这题$dsu$ $on$ $tre ...

  9. dsu on tree(CF600E Lomsat gelral)

    题意 一棵树有n个结点,每个结点都是一种颜色,每个颜色有一个编号,求树中每个子树的最多的颜色编号的和. dsu on tree 用来解决子树问题 好像不能带修改?? 暴力做这个题,就是每次扫一遍子树统 ...

  10. cf600E. Lomsat gelral(dsu on tree)

    题意 题目链接 给出一个树,求出每个节点的子树中出现次数最多的颜色的编号和 Sol dsu on tree的裸题. 一会儿好好总结总结qwq #include<bits/stdc++.h> ...

随机推荐

  1. MOOC C++笔记(三):类和对象提高

    第三周:类和对象提高 this指针 作用 this指针作用就是指向成员函数所作用的对象. 非静态成员函数中可以直接使用this来代表指向该函数作用的指针. 成员函数中默认有一个this指针指向当前对象 ...

  2. RDDs之combineByKey()

    combineByKey(crateCombiner,mergeValue,mergeCombiners,partitioner) 最常用的基于Key的聚合函数,返回的类型可以和输入的类型不一样 许多 ...

  3. 【深度学习】Focal Loss 与 GHM——解决样本不平衡问题

    Focal Loss 与 GHM Focal Loss Focal Loss 的提出主要是为了解决难易样本数量不平衡(注意:这有别于正负样本数量不均衡问题)问题.下面以目标检测应用场景来说明. 一些 ...

  4. ASP.NET 服务端接收Multipart/form-data文件

    在网络编程过程中需要向服务器上传文件. Multipart/form-data是上传文件的一种方式. /// <summary> /// 上传工程文件 /// </summary&g ...

  5. Spring 梳理 - JavaConfig实战(spring MVC)-原创

    目录结构 AppInitializer.java package com.jt; import org.springframework.web.servlet.support.AbstractAnno ...

  6. Enum枚举的使用实现

    业务中涉及到的状态字段或者简单的选择项的使用. 例如: 1.定义enum枚举类. package com.yjl.enums; import java.util.Objects; public enu ...

  7. Nginx+PHP7.3.9 Docker镜像制作

    最近因项目需要制作了多个版本的php docker镜像,制作过程可谓是一波三折,因基于yum的方式安装php的方式在安装扩展插件时很不方便,不容易找到插件对应的yum源,所以PHP在docker镜像中 ...

  8. 设计模式的七大原则(Java)

    一.OOP三大基本特性 OOP 面向对象程序设计(Object Oriented Programming)作为一种新方法,其本质是以建立模型体现出来的抽象思维过程和面向对象的方法.模型是用来反映现实世 ...

  9. xpath语法分享

    # xpath语法: ## 使用方式: 使用//获取整个页面当中的元素,然后写标签名,然后再写谓词进行提取.比如: ``` //div[@class='abc'] ``` ## 需要注意的知识点: 1 ...

  10. IDEA 学习笔记之 Console显示日志大小

    Console显示日志大小: IntelliJ IDEA默认的Output输出缓存区大小只有1024KB,超过大小限制的就会被清除,而且还会显示[too much output to process] ...