题意

考虑杀每只龙\(i\)时候用的剑是一定的,我们可以用multiset模拟一遍得到,设为\(b_i\)。

发现我们要求一个\(x\)满足对每个\(i\)有:\(b_i*x\equiv a_i\pmod{p_i}\)

这很像扩展中国剩余定理,但是系数不是1,于是考虑化简。

假设前\(i-1\)个方程的答案为\(res\),模数的\(lcm\)为\(M\)。

我们要找一个\(t\)满足:\(b_i*(res+t*M)\equiv a_i\pmod{p_i}\)

即:\(b_i*M*t\equiv a_i-b_i*res\pmod{p_i}\)

这时就可以用\(exgcd\)了

注意我们并非求最小整数解,因为有必须把每头龙都打到负血的条件,我们记一个限制,最后找到第一个满足限制的解即可。

code:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=1e5+10;
int T,n,m;
ll a[maxn],b[maxn],P[maxn],sword[maxn];
multiset<ll>::iterator it;
multiset<ll>s;
ll exgcd(ll a,ll b,ll& x,ll& y)
{
if(!b){x=1,y=0;return a;}
ll d=exgcd(b,a%b,x,y);
ll z=x;x=y;y=z-(a/b)*y;
return d;
}
inline ll mul(ll x,ll y,ll mod)
{
ll res=0;
while(y)
{
if(y&1)res=(res+x)%mod;
x=(x+x)%mod;y>>=1;
}
return res;
}
inline ll solve()
{
s.clear();
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)scanf("%lld",&a[i]);
for(int i=1;i<=n;i++)scanf("%lld",&P[i]);
for(int i=1;i<=n;i++)scanf("%lld",&sword[i]);
for(int i=1;i<=m;i++)
{
ll x;scanf("%lld",&x);
s.insert(x);
}
for(int i=1;i<=n;i++)
{
it=s.upper_bound(a[i]);
if(it!=s.begin())it--;
b[i]=*it;s.erase(it),s.insert(sword[i]);
}
ll maxx=0,res=0,M=1;
for(int i=1;i<=n;i++)
{
maxx=max(maxx,(a[i]-1)/b[i]+1);
ll tmpa=mul(b[i],M,P[i]),tmpb=P[i],tmpc=((a[i]-mul(b[i],res,P[i]))%P[i]+P[i])%P[i];
ll x,y,d=exgcd(tmpa,tmpb,x,y);
x=(x%P[i]+P[i])%P[i];
if(tmpc%d)return -1;
res+=mul(x,tmpc/d,P[i]/d)*M;M*=P[i]/d;
res=(res%M+M)%M;
}
if(res<maxx)res+=((maxx-res-1)/M+1)*M;
return res;
}
int main()
{
scanf("%d",&T);
while(T--)printf("%lld\n",solve());
return 0;
}

luoguP4774 [NOI2018]屠龙勇士的更多相关文章

  1. BZOJ5418[Noi2018]屠龙勇士——exgcd+扩展CRT+set

    题目链接: [Noi2018]屠龙勇士 题目大意:有$n$条龙和初始$m$个武器,每个武器有一个攻击力$t_{i}$,每条龙有一个初始血量$a_{i}$和一个回复值$p_{i}$(即只要血量为负数就一 ...

  2. P4774 [NOI2018]屠龙勇士

    P4774 [NOI2018]屠龙勇士 先平衡树跑出打每条龙的atk t[] 然后每条龙有\(xt \equiv a[i](\text{mod }p[i])\) 就是\(xt+kp[i]=a[i]\) ...

  3. [洛谷P4774] [NOI2018]屠龙勇士

    洛谷题目链接:[NOI2018]屠龙勇士 因为markdown复制过来有点炸格式,所以看题目请戳上面. 题解: 因为杀死一条龙的条件是在攻击\(x\)次,龙恢复\(y\)次血量\((y\in N^{* ...

  4. BZOJ_5418_[Noi2018]屠龙勇士_exgcd+excrt

    BZOJ_5418_[Noi2018]屠龙勇士_exgcd+excrt Description www.lydsy.com/JudgeOnline/upload/noi2018day2.pdf 每次用 ...

  5. uoj396 [NOI2018]屠龙勇士

    [NOI2018]屠龙勇士 描述 小 D 最近在网上发现了一款小游戏.游戏的规则如下: 游戏的目标是按照编号 1∼n 顺序杀掉 n 条巨龙,每条巨龙拥有一个初始的生命值 ai .同时每条巨龙拥有恢复能 ...

  6. 洛谷 P4774 [NOI2018] 屠龙勇士

    链接:P4774 前言: 交了18遍最后发现是多组数据没清空/ll 题意: 其实就是个扩中. 分析过程: 首先发现根据题目描述的选择剑的方式,每条龙对应的剑都是固定的,有查询前驱,后继(在该数不存在前 ...

  7. 洛谷P4774 [NOI2018]屠龙勇士 [扩欧,中国剩余定理]

    传送门 思路 首先可以发现打每条龙的攻击值显然是可以提前算出来的,拿multiset模拟一下即可. 一般情况 可以搞出这么一些式子: \[ atk_i\times x=a_i(\text{mod}\ ...

  8. [NOI2018]屠龙勇士

    题目描述 题解 考虑增量法. 假设我们已经做完了前k个条件,前面的模数连乘起来的结果为M,答案为X,当前的攻击力为x,龙的血量为a. 那么我们这一次的答案的表达形式是X+t*M的. 这一次需要满足的是 ...

  9. LOJ2721 [NOI2018] 屠龙勇士 【扩展中国剩余定理】

    好久没写了,写一篇凑个数. 题目分析: 这题不难想,讲一下中国剩余定理怎么扩展. 考虑$$\left\{\begin{matrix}x \equiv a\pmod{b}\\ x \equiv c\pm ...

随机推荐

  1. 机器学习--支持向量机 (SVM)算法的原理及优缺点

    一.支持向量机 (SVM)算法的原理 支持向量机(Support Vector Machine,常简称为SVM)是一种监督式学习的方法,可广泛地应用于统计分类以及回归分析.它是将向量映射到一个更高维的 ...

  2. 【LOJ2402】「THUPC 2017」天天爱射击 / Shooting(整体二分)

    点此看题面 大致题意: 有\(n\)个区间,每个区间有一个权值,当权值变成\(0\)时消失.每个时刻将覆盖某一位置的所有区间权值减\(1\),求每个时刻有多少个区间在这一刻消失. 前言 整体二分裸题啊 ...

  3. ASP.NET Core 中基于 API Key 对私有 Web API 进行保护

    这两天遇到一个应用场景,需要对内网调用的部分 web api 进行安全保护,只允许请求头账户包含指定 key 的客户端进行调用.在网上找到一篇英文博文 ASP.NET Core - Protect y ...

  4. 【Sublime】Sublime 常用插件

    1.sublime设置默认浏览器及打开网页的快捷键设置插件 名称:SideBarEnhancements 地址:https://github.com/titoBouzout/SideBarEnhanc ...

  5. 《细说PHP》 第四版 样章 第二章 PHP的应用与发展 3

    2.3  PHP的开发优势 每种编程语言都有针对的领域,当然相同领域也有多个编程语言可以选择, 所以需要了解每种编程语言的优势和劣势,才能更好地去选择使用,在对的开发领域充分发挥它的优势,编写出最优质 ...

  6. 游戏设计模式——Unity事件队列(纪念京阿尼事件)

    “对消息或事件的发送与受理进行时间上的解耦.” 在游戏开发过程中,经常会出现不同板块之间的信息交流,或是存在“当...,就...”的情况,事件队列编程模式可以有效解决消息传递中产生的脚本耦合问题,让同 ...

  7. Flink1.7.2安装部署的几种方式

    原文链接:https://blog.csdn.net/a_drjiaoda/article/details/88037282 前言:Flink的运行一般分为三种模式,即local.Standalone ...

  8. php中trait的使用方法

    1.php中的trait是啥? 看上去既像类又像接口,其实都不是,Trait可以看做类的部分实现,可以混入一个或多个现有的PHP类中,其作用有两个:表明类可以做什么:提供模块化实现.Trait是一种代 ...

  9. Redis+Keepalived

    简介 Redis高可用方案,保障两台Redis任意节点故障可正常使用. 方案:Redis主从复制+Redis哨兵+Keepalived 环境 系统:Centos/Radhat 7 服务1:Redis ...

  10. 黄聪:mysql的SQL_CALC_FOUND_ROWS 使用 类似count(*) 使用性能更高

    mysql的SQL_CALC_FOUND_ROWS 使用 类似count(*) 使用性能更高 在很多分页的程序中都这样写: SELECT COUNT(*) from `table` WHERE ... ...