FLOPS:注意全大写,是floating point operations per second的缩写,意指每秒浮点运算次数,理解为计算速度。是一个衡量硬件性能的指标。

FLOPs:注意s小写,是floating point operations的缩写(s表复数),意指浮点运算数,理解为计算量。可以用来衡量算法/模型的复杂度。

网上打字很容易全小写,造成混淆,本问题针对模型,应指的是FLOPs。

以下答案不考虑activation function的运算。

卷积层:

Ci=input channel, k=kernel size, HW=output feature map size, Co=output channel.

2是因为一个MAC算2个operations。

不考虑bias时有-1,有bias时没有-1。

上面针对一个input feature map,没考虑batch size。

理解上面这个公式分两步,括号内是第一步,计算出output feature map的一个pixel,然后再乘以HWCo拓展到整个output feature map。括号内的部分又可以分为两步, ,第一项是乘法运算数,第二项是加法运算数,因为n个数相加,要加n-1次,所以不考虑bias,会有一个-1,如果考虑bias,刚好中和掉,括号内变为

全联接层:

I=input neuron numbers, O=output neuron numbers.

2是因为一个MAC算2个operations。

不考虑bias时有-1,有bias时没有-1。

分析同理,括号内是一个输出神经元的计算量,拓展到O了输出神经元。

参考:chen liu

对于一个卷积层,假设其大小为  (其中c为#input channel, n为#output channel),输出的feature map尺寸为  ,则该卷积层的

  • #paras = 
  • #FLOPS= 

即#FLOPS=  #paras

参考:李珂

Model_size = 4*params  模型大小为参数量的4倍

附:Pytorch计算FLOPs的代码:

http://link.zhihu.com/?target=https%3A//github.com/Lyken17/pytorch-OpCounter

https://github.com/sovrasov/flops-counter.pytorch

神器(pytorch):

pytorch-OpCounter 用法:(pytorch版本>=1.0)

from torchvision.models import resnet50
from thop import profile
model = resnet50()
flops, params = profile(model, input_size=(1, 3, 224,224))

torchstat 用法:

from torchstat import stat
import torchvision.models as models model = model.alexnet()
stat(model, (3, 224, 224))

flopth 用法:

from flopth import flopth
print(flopth(net, in_size=[3,112,112]))

ptflops用法:

from ptflops import get_model_complexity_info
flops, params = get_model_complexity_info(net, (3, 224, 224), as_strings=True, print_per_layer_stat=True)
print('Flops: ' + flops)
print('Params: ' + params)

自己计算参数量:

print('Total params: %.2fM' % (sum(p.numel() for p in net.parameters())/1000000.0))

需要注意的是:params只与你定义的网络结构有关,和forward的任何操作无关。即定义好了网络结构,参数就已经决定了。FLOPs和不同的层运算结构有关。如果forward时在同一层(同一名字命名的层)多次运算,FLOPs不会增加。

参考:

轻量级神经网络“巡礼”(一)—— ShuffleNetV2

(转载)CNN 模型所需的计算力(FLOPs)和参数(parameters)数量计算的更多相关文章

  1. 卷积神经网络(CNN)模型结构

    在前面我们讲述了DNN的模型与前向反向传播算法.而在DNN大类中,卷积神经网络(Convolutional Neural Networks,以下简称CNN)是最为成功的DNN特例之一.CNN广泛的应用 ...

  2. CNN 模型压缩与加速算法综述

    本文由云+社区发表 导语:卷积神经网络日益增长的深度和尺寸为深度学习在移动端的部署带来了巨大的挑战,CNN模型压缩与加速成为了学术界和工业界都重点关注的研究领域之一. 前言 自从AlexNet一举夺得 ...

  3. 深度学习方法(七):最新SqueezeNet 模型详解,CNN模型参数降低50倍,压缩461倍!

    欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术感兴趣的同学加入. 继续前面关于深度学习CNN经典模型的 ...

  4. 经典CNN模型计算量与内存需求分析

    表1 CNN经典模型的内存,计算量和参数数量对比 AlexNet VGG16 Inception-v3 模型内存(MB) >200 >500 90-100 参数(百万) 60 138 23 ...

  5. 经典分类CNN模型系列其五:Inception v2与Inception v3

    经典分类CNN模型系列其五:Inception v2与Inception v3 介绍 Inception v2与Inception v3被作者放在了一篇paper里面,因此我们也作为一篇blog来对其 ...

  6. 基于Pre-Train的CNN模型的图像分类实验

    基于Pre-Train的CNN模型的图像分类实验  MatConvNet工具包提供了好几个在imageNet数据库上训练好的CNN模型,可以利用这个训练好的模型提取图像的特征.本文就利用其中的 “im ...

  7. FaceRank-人脸打分基于 TensorFlow 的 CNN 模型

    FaceRank-人脸打分基于 TensorFlow 的 CNN 模型 隐私 因为隐私问题,训练图片集并不提供,稍微可能会放一些卡通图片. 数据集 130张 128*128 张网络图片,图片名: 1- ...

  8. Keras入门(四)之利用CNN模型轻松破解网站验证码

    项目简介   在之前的文章keras入门(三)搭建CNN模型破解网站验证码中,笔者介绍介绍了如何用Keras来搭建CNN模型来破解网站的验证码,其中验证码含有字母和数字.   让我们一起回顾一下那篇文 ...

  9. keras训练cnn模型时loss为nan

    keras训练cnn模型时loss为nan 1.首先记下来如何解决这个问题的:由于我代码中 model.compile(loss='categorical_crossentropy', optimiz ...

随机推荐

  1. VLAN实验5:利用三层交换机实现VLAN间路由

    实验环境: 实验拓扑图:   实验编址: 实验步骤:1.基本配置按照实验编址表在PC上进行基本的IP地址配置,三层交换机上先不做任何配置. 测试PC1与PC2的连通性 正常 测试PC1与PC3的连通性 ...

  2. Python的高级文件操作(shutil模块)

    Python的高级文件操作(shutil模块) 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 如果让我们用python的文件处理来进行文件拷贝,想必很多小伙伴的思路是:使用打开2个 ...

  3. db2 mysql oracle 邮件 tomcat ssh telnet ftp samba 账号密码

    db2 mysql oracle 邮件 tomcat ssh telnet ftp samba 账号密码 检测

  4. NOIP2019 PJ 对称二叉树

    题目描述 一棵有点权的有根树如果满足以下条件,则被轩轩称为对称二叉树: 二叉树: 将这棵树所有节点的左右子树交换,新树和原树对应位置的结构相同且点权相等. 下图中节点内的数字为权值,节点外的 id 表 ...

  5. 微信之获取微信的openid(二)详细版

    第一步 :配置测试号,网页授权获取用户基本信息. 该授权回掉页面域名为ngrok 映射的域名,我的映射地址是127.0.0.1:8080. 到此微信配置完毕,接下来就是直接上代码了 2.用户同意授权 ...

  6. Python爬虫入门——使用requests爬取python岗位招聘数据

    爬虫目的 使用requests库和BeautifulSoup4库来爬取拉勾网Python相关岗位数据 爬虫工具 使用Requests库发送http请求,然后用BeautifulSoup库解析HTML文 ...

  7. Mybatis分页方法

    使用方法https://github.com/pagehelper/Mybatis-PageHelper/blob/master/wikis/zh/HowToUse.md 使用 Maven 在 pom ...

  8. [Web] Adaptive loading

    There is pretty good talk about performacne https://www.youtube.com/watch?v=puUPpVrIRkc It targets t ...

  9. 留言板(Nodejs)

    一.知识点 ①nodejs实际开发中,通常把所有的HTML文件放到views目录中 ②nodejs实际开发中,通常把所有的静态资源文件放到public目录中,方便统一处理 当浏览器收到HTML响应内容 ...

  10. 洛谷P1270 访问美术馆

    题目 树形DP,首先考虑递归建图,类似于线段树的中序遍历.然后取状态dp[i][j]表示i点花费j时间所偷到的最多的画,有方程: \(dp[now][nwt] = max(dp[now][nwt], ...