需要安装jpype先,这个是python调用java库的桥梁。

# -*- coding: utf-8 -*-

"""
Created on Thu May 10 09:19:55 2018 @author: wang小尧
""" import jpype #路径
jvmPath = jpype.getDefaultJVMPath() # 获得系统的jvm路径
ext_classpath = r"./ner/hanlp\hanlp-1.6.3.jar:./ner/hanlp"
jvmArg = '-Djava.class.path=' + ext_classpath
jpype.startJVM(jvmPath, jvmArg, "-Xms1g", "-Xmx1g") #繁体转简体
def TraditionalChinese2SimplifiedChinese(sentence_str):
HanLP = jpype.JClass('com.hankcs.hanlp.HanLP')
return HanLP.convertToSimplifiedChinese(sentence_str) #切词&命名实体识别与词性标注(可以粗略识别)
def NLP_tokenizer(sentence_str):
NLPTokenizer = jpype.JClass('com.hankcs.hanlp.tokenizer.NLPTokenizer')
return NLPTokenizer.segment(sentence_str) #地名识别,标注为ns
def Place_Recognize(sentence_str):
HanLP = jpype.JClass('com.hankcs.hanlp.HanLP')
segment = HanLP.newSegment().enablePlaceRecognize(True)
return HanLP.segment(sentence_str) #人名识别,标注为nr
def PersonName_Recognize(sentence_str):
HanLP = jpype.JClass('com.hankcs.hanlp.HanLP')
segment = HanLP.newSegment().enableNameRecognize(True)
return HanLP.segment(sentence_str) #机构名识别,标注为nt
def Organization_Recognize(sentence_str):
HanLP = jpype.JClass('com.hankcs.hanlp.HanLP')
segment = HanLP.newSegment().enableOrganizationRecognize(True)
return HanLP.segment(sentence_str) #标注结果转化成列表
def total_result(function_result_input):
x = str(function_result_input)
y = x[1:len(x)-1]
y = y.split(',')
return y #时间实体
def time_result(total_result):
z = []
for i in range(len(total_result)):
if total_result[i][-2:] == '/t':
z.append(total_result[i])
return z #Type_Recognition 可以选 ‘place’,‘person’,‘organization’三种实体,
#返回单一实体类别的列表
def single_result(Type_Recognition,total_result):
if Type_Recognition == 'place':
Type = '/ns'
elif Type_Recognition == 'person':
Type = '/nr'
elif Type_Recognition == 'organization':
Type = '/nt'
else:
print ('请输入正确的参数:(place,person或organization)')
z = []
for i in range(len(total_result)):
if total_result[i][-3:] == Type:
z.append(total_result[i])
return z #把单一实体结果汇总成一个字典
def dict_result(sentence_str):
sentence = TraditionalChinese2SimplifiedChinese(sentence_str)
total_dict = {}
a = total_result(Place_Recognize(sentence))
b = single_result('place',a)
c = total_result(PersonName_Recognize(sentence))
d = single_result('person',c)
e = total_result(Organization_Recognize(sentence))
f = single_result('organization',e)
g = total_result(NLP_tokenizer(sentence))
h = time_result(g)
total_list = [i for i in [b,d,f,h]]
total_dict.update(place = total_list[0],person = total_list[1],organization = total_list[2],time = total_list[3])
jpype.shutdownJVM()#关闭JVM虚拟机
return total_dict #测试
test_sentence="2018年武胜县新学乡政府大楼门前锣鼓喧天,6月份蓝翔给宁夏固原市彭阳县红河镇捐赠了挖掘机,中国科学院计算技术研究所的宗成庆教授负责教授自然语言处理课程"
print (dict_result(test_sentence))

结果:

{'place': [' 武胜县/ns', ' 宁夏/ns', ' 固原市/ns', ' 河镇/ns'], 'person': [' 蓝翔/nr', ' 阳县红/nr', ' 宗成庆/nr'], 'organization': [' 中国科学院/nt'], 'time': ['2018年/t', ' 6月份/t']}

转自:https://www.jianshu.com/p/d7e7cc747e56

hanlp进行命名实体识别的更多相关文章

  1. python调用hanlp进行命名实体识别

    本文分享自 6丁一的猫 的博客,主要是python调用hanlp进行命名实体识别的方法介绍.以下为分享的全文. 1.python与jdk版本位数一致 2.pip install jpype1(pyth ...

  2. 8.HanLP实现--命名实体识别

    笔记转载于GitHub项目:https://github.com/NLP-LOVE/Introduction-NLP 8. 命名实体识别 8.1 概述 命名实体 文本中有一些描述实体的词汇.比如人名. ...

  3. HanLP分词命名实体提取详解

    HanLP分词命名实体提取详解   分享一篇大神的关于hanlp分词命名实体提取的经验文章,文章中分享的内容略有一段时间(使用的hanlp版本比较老),最新一版的hanlp已经出来了,也可以去看看新版 ...

  4. 自然语言18.2_NLTK命名实体识别

    QQ:231469242 欢迎nltk爱好者交流 http://blog.csdn.net/u010718606/article/details/50148261 NLTK中对于很多自然语言处理应用有 ...

  5. 基于条件随机场(CRF)的命名实体识别

    很久前做过一个命名实体识别的模块,现在有时间,记录一下. 一.要识别的对象 人名.地名.机构名 二.主要方法 1.使用CRF模型进行识别(识别对象都是最基础的序列,所以使用了好评率较高的序列识别算法C ...

  6. 神经网络结构在命名实体识别(NER)中的应用

    神经网络结构在命名实体识别(NER)中的应用 近年来,基于神经网络的深度学习方法在自然语言处理领域已经取得了不少进展.作为NLP领域的基础任务-命名实体识别(Named Entity Recognit ...

  7. 学习笔记CB007:分词、命名实体识别、词性标注、句法分析树

    中文分词把文本切分成词语,还可以反过来,把该拼一起的词再拼到一起,找到命名实体. 概率图模型条件随机场适用观测值条件下决定随机变量有有限个取值情况.给定观察序列X,某个特定标记序列Y概率,指数函数 e ...

  8. NLP入门(五)用深度学习实现命名实体识别(NER)

    前言   在文章:NLP入门(四)命名实体识别(NER)中,笔者介绍了两个实现命名实体识别的工具--NLTK和Stanford NLP.在本文中,我们将会学习到如何使用深度学习工具来自己一步步地实现N ...

  9. NLP入门(四)命名实体识别(NER)

      本文将会简单介绍自然语言处理(NLP)中的命名实体识别(NER).   命名实体识别(Named Entity Recognition,简称NER)是信息提取.问答系统.句法分析.机器翻译等应用领 ...

随机推荐

  1. Markdown温故知新(1):Markdown面面观

    1.什么是 Markdown? 2.有哪些人在用 Markdown? 3.用 Markdown 的优势是什么? 4.Markdown 的语法标准简介 5.怎么用 Markdown? 6.如何选择 Ma ...

  2. python 进程和线程-进程和线程的比较以及分布式进程

    进程和线程的比较 参考链接:https://www.liaoxuefeng.com/wiki/1016959663602400/1017631469467456 我们介绍了多进程和多线程,这是实现多任 ...

  3. spring事务概念与获取事务时事务传播行为源码分析

    一.事务状态:org.springframework.transaction.TransactionStatus isNewTransaction 是否是新事务 hasSavepoint 是否有保存点 ...

  4. 02、JDBC查询

    ① 向数据库发送SQL查询语句 首先使用Statement声明一个SQL语句对象,然后让已创建的连接对象con调用方法createStatement()创建SQL语句对象. Statement sql ...

  5. 对比ubuntu与centos系统 ​​​​

    CentOS与Ubuntu该如何选择,哪个更好用.笔者在自媒体平台收集了一些网友的观点,较为经典,分享给大家.至于应该选择哪个,希望看完本文章后,读者心中有数. 观点1:CentOS适用于服务器,Ub ...

  6. 在centos下安装rar解压.rar压缩包

    CentOS本身不自带rar环境,因此对于rar文件无法直接解压,需要先配置rar环境. 首先需要确定自己的系统是64位还是32位的,通过这个命令: [root@localhost]# uname - ...

  7. 利用Python读取图片exif敏感信息

    众所周知,现在很多的照相机等软件,拍摄会有选项,是否包含位置信息等. 当然有的人会说,我在微信中查看图片exif信息并没有啊,这是因为你发送到微信服务器的时候,微信帮你完成了保密工作. 常见的图片中包 ...

  8. day 45

    目录 form表单(**************) 参数 action method select标签 下拉框 textarea标签 CSS 注释 css的语法结构 css的三种引入方式 css查找( ...

  9. windows server 2012配置php环境教程

    买了windows系统的服务器(VPS)等之后我们需要一个php环境来搭建自己的项目,这里介绍手工在windows server 2012上面配置php环境的具体步骤,适合使用服务器和VPS等的新手. ...

  10. MySQL复制技术

    MySQL高可用方案 投票选举机制,较复杂 MySQL本身没有提供replication failover的解决方案,自动切换需要依赖MHA脚本 可以有多台从库,从库可以做报表和备份 MySQL复制技 ...