hdu6715 算术 2019百度之星初赛3-1003
题目地址
http://acm.hdu.edu.cn/showproblem.php?pid=6715
题解
还是不会这题的容斥做法qwq。hjw当场写了个容斥A了。我推了个莫反,但是没反应过来我的式子能\(n\log n\)暴力算...
&\sum_i \sum_j \mu(\frac{ij}{(i,j)})\\
&=\sum_{d} \sum_i \sum_j \mu(\frac{i}{d}) \mu(\frac{j}{d}) \mu(d) [(i,j)=d]\\
&=\sum_{d}\mu(d)\sum_i^{\frac{n}{d}} \sum_j ^\frac{m}{d} \mu(id)\mu(jd)[(i,j)=1]\\
&=\sum_{d}\mu(d)\sum_i^{\frac{n}{d}} \sum_j ^\frac{m}{d} \mu(id)\mu(jd)\sum_{k|(i,j)}\mu(k)\\
&=\sum_{d}\mu(d)\sum_{k=1}^{\frac{n}{d}} \mu(k)\sum_i^{\frac{n}{kd}} \sum_j ^\frac{m}{kd} \mu(kdi)\mu(kdj)\\
&设T=kd\\
&=\sum_T \left( \sum_{i} ^ {\frac{n}{T}} \mu(iT) \right) \left( \sum_{j} ^ {\frac{m}{T}} \mu(jT) \right)\sum_{d|T} \mu(d)\mu(\frac{T}{d})
\end{aligned}
\]
第一步就是利用了\(\mu\)是个积性函数的性质,\(i\)和\(j\)除掉\((i,j)\)后显然互质,然后再乘上\((i,j)\)即可得到\(\mu(\frac{ij}{(i,j)})\)了。
然后第二步是乘上了\(\mu^2 (d)\)(当\(d\)无平方因子时,\(\mu^2 (d)=1\),当有平方因子时本身这一项也是\(0\)),所以可以直接乘上\(\mu^2 (d)\)而不会对式子造成影响。
最后式子三个东西全都能\(n \log n\)埃筛筛出来...总复杂度\(O(T n \log n)\)
开了long long所以可能跑的比较慢...看起来是不用开的
#include <bits/stdc++.h>
using namespace std;
namespace io {
char buf[1<<21], *p1 = buf, *p2 = buf, buf1[1<<21];
inline char gc() {
if(p1 != p2) return *p1++;
p1 = buf;
p2 = p1 + fread(buf, 1, 1 << 21, stdin);
return p1 == p2 ? EOF : *p1++;
}
#define G gc
#ifndef ONLINE_JUDGE
#undef G
#define G getchar
#endif
template<class I>
inline void read(I &x) {
x = 0; I f = 1; char c = G();
while(c < '0' || c > '9') {if(c == '-') f = -1; c = G(); }
while(c >= '0' && c <= '9') {x = x * 10 + c - '0'; c = G(); }
x *= f;
}
template<class I>
inline void write(I x) {
if(x == 0) {putchar('0'); return;}
I tmp = x > 0 ? x : -x;
if(x < 0) putchar('-');
int cnt = 0;
while(tmp > 0) {
buf1[cnt++] = tmp % 10 + '0';
tmp /= 10;
}
while(cnt > 0) putchar(buf1[--cnt]);
}
#define in(x) read(x)
#define outn(x) write(x), putchar('\n')
#define out(x) write(x), putchar(' ')
} using namespace io;
#define ll long long
const int N = 1000010;
int T, n, m;
int p[N], cnt, vis[N];
ll mu[N], S1[N], S2[N], S3[N];
void init() {
mu[1] = 1;
for(int i = 2; i < N; ++i) {
if(!vis[i]) p[++cnt] = i, mu[i] = -1;
for(int j = 1; j <= cnt && i * p[j] < N; ++j) {
vis[i * p[j]] = 1;
if(i % p[j] == 0) {
mu[i * p[j]] = 0;
break;
}
mu[i * p[j]] = -mu[i];
}
}
for(int i = 1; i < N; ++i) {
for(int j = i; j < N; j += i) {
S3[j] += mu[i] * mu[j / i];
}
}
}
int main() {
init(); read(T);
while(T--) {
read(n); read(m);
for(int i = 1; i <= max(n, m); ++i) S1[i] = S2[i] = 0;
if(n > m) swap(n, m);
for(int i = 1; i <= n; ++i)
for(int j = i; j <= n; j += i)
S1[i] += mu[j];
for(int i = 1; i <= m; ++i)
for(int j = i; j <= m; j += i)
S2[i] += mu[j];
ll ans = 0;
for(int i = 1; i <= n; ++i) {
ans += S1[i] * S2[i] * S3[i];
}
outn(ans);
}
}
hdu6715 算术 2019百度之星初赛3-1003的更多相关文章
- 二分搜索 2015百度之星初赛1 HDOJ 5248 序列变换
题目传送门 /* 二分搜索:在0-1e6的范围找到最小的max (ai - bi),也就是使得p + 1 <= a[i] + c or a[i] - c 比赛时以为是贪心,榨干智商也想不出来:( ...
- 2016百度之星 初赛2A ABEF
只做了1001 1002 1005 1006.剩下2题可能以后补? http://acm.hdu.edu.cn/search.php?field=problem&key=2016%22%B0% ...
- HDU 5690:2016"百度之星" - 初赛 All X
原文链接:https://www.dreamwings.cn/hdu5690/2657.html All X Time Limit: 2000/1000 MS (Java/Others) Mem ...
- 2016"百度之星" - 初赛(Astar Round2A)HDU 5695 拓扑排序+优先队列
Gym Class Time Limit: 6000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total S ...
- 【百度之星初赛A】路径交 LCA+线段树
[百度之星初赛A]路径交 Problem Description 给定一棵n个点的树,以及m条路径,每次询问第L条到第R条路径的交集部分的长度(如果一条边同时出现在2条路径上,那么它属于路径的交集). ...
- 数学 2015百度之星初赛2 HDOJ 5255 魔法因子
题目传送门 /* 数学:不会写,学习一下这种解题方式:) 思路:设符合条件的数的最高位是h,最低位是l,中间不变的部分为mid,由题意可得到下面的公式(这里对X乘上1e6用a表示,b表示1e6) (h ...
- LIS 2015百度之星初赛2 HDOJ 5256 序列变换
题目传送门 题意:中文题面 分析:LIS(非严格):首先我想到了LIS,然而总觉得有点不对:每个数先减去它的下标,防止下面的情况发生:(转载)加入序列是1,2,2,2,3,这样求上升子序列是3,也就是 ...
- Kruskal 2015百度之星初赛2 HDOJ 5253 连接的管道
题目传送门 /* 最小生成树(Kruskal):以权值为头,带入两个端点,自然的排序;感觉结构体的并查集很好看 注意:题目老头要的是两个农田的高度差,中文水平不好,题意理解成和平均值的高度差! */ ...
- BFS 2015百度之星初赛2 HDOJ 5254 棋盘占领
题目传送门 /* BFS:先把1的入队,每个1和它相邻的组合后看看能不能使0变1,若有则添加入队,change函数返回改变了多少个0 注意:结果还要加上原来占领的 */ #include <cs ...
随机推荐
- keystone 域中项目、用户、角色的创建
keystone命令现在全是改成了openstack!!!!!!!!!!!!! Create the service project: $ openstack project create --dom ...
- Oracle spatial空间查询的选择度分析
在上一篇中,我用一个案例演示了对于数值或字符串类型的字段,选择度的计算方法.并证明了当字段值的选择度不同时,将会影响CBO选择最终的执行计划.对于可排序的字段类型,选择度计算模型已经有很多人写博客介绍 ...
- python sys模块(12)
在python sys模块提供对解释器使用或维护的一些变量的访问,以及与解释器强烈交互的函数!关于sys模块在官网也有详细的介绍:python sys模块官方介绍. 一.sys模块简介 sys.arg ...
- 轮胎魔术公式(Magic Fomula)模型
魔术公式是用三角函数的组合公式拟合轮胎试验数据,用一套形式相同的公式就可以完整地表达轮胎的纵向力Fx.侧向力Fy.回正力矩Mz.翻转力矩Mx.阻力矩My以及纵向力.侧向力的联合作用工况,故称为“魔术公 ...
- Docker的基础教程(基于CentOS)
1.查看版本 Docker 要求 CentOS 系统的内核版本高于 3.10 ,查看本页面的前提条件来验证你的CentOS 版本是否支持 Docker . 通过 uname -r 命令查看你当前的内核 ...
- windows程序设计基础知识
Win32 API(Application Programming Interface) Win32 API可认为是一个程序库,提供各式各样的与windows系统服务有关的函数. Win32 API是 ...
- python学习-38迭代器和生成器
迭代器和生成器 ---- 迭代器协议和for循环工作机制 1.迭代器协议:对象必须提供一个next方法,执行该方法要么返回迭代中的下一项,要么引起一个Stoplteration异常,以终止迭代(只能往 ...
- MES系统之设备管理的基础功能
设备是制造企业进行生产的主要物质技术基础,制造企业的生产率.产品质量.生产成本都与设备直接相关.因此,正确使用.定时保养.及时检修维护设备,并对设备的运行性能进行分析,使设备处于良好的状态,才能保证企 ...
- Unity - Profiler参数详解
CPU Usage ● GC Alloc - 记录了游戏运行时代码产生的堆内存分配.这会导致ManagedHeap增大,加速GC的到来.我们要尽可能避免不必要的堆内存分配,同时注意:1 ...
- python BeautifulSoup4--例子
from bs4 import BeautifulSoup import requests import re #请求博客园首页 r=requests.get('http://www.cnblogs. ...