Kotlin泛型与协变及逆变原理剖析
在上一次https://www.cnblogs.com/webor2006/p/11234941.html中学习了数据类[data class]相关的知识,这次会学习关于泛型相关的东东,其中有关于泛型我经常不太理解的关于<? extends T>和<? super T>的使用方式,所以好好学习,天天向上。
密封类(sealed class):
关于这个类,我们在上一次学习中其实是提到过这个关键字,回忆一下:
所谓密封,就是将东东给包装起来,然后我们要使用只能使用包装好里面受限的东东,其实跟Java的枚举很类似,但又跟枚举不太一样,其实它是枚举的一个扩展,枚举我们知道在定义时其实例就已经规定好了,关于密封类跟java枚举的区别等学会了用密封类之后就能体会到了 ,而密封类其实描述的是类的一种层次,也就是父类和子类的一种关系,而密封类的子类可以有多个,说了这么说那也不知道在说啥,直接来撸码来看下密封类是个什么东东,在撸码之前先明白个规则:
1、在Kotlin中如果一个密封类有若干个子类,那么密封类和子类必须定义在同一个文件当中,其中在Kotlin1.1版本之前对于它的规定更加的严格,当时是要求密封类的子类必须要定义在密封类里面,而在Kotlin1.1版本以后就打开了这个限定了。
2、在Kotlin中,密封类是一个抽象类,不能实例化。
好,下面来定义一个密封类:
因为它是抽象的,所以可以定义几个子类,如下:
这样写貌似有点想写多态的感觉,肯定还得定义一个计算方法呗,下面定义一下:
下面来调用一下:
貌似跟枚举使用没啥太大的区别,好,接下来再来定义一个子类区别就可以显现了,如下:
看懂了密封类的作用木有,也就是它就是描述一种类的层次关系,目前我们密封类定义了三个子类,而when表达式的条件也必须有三种可能,而Java中的枚举是没有这一层关系的,下面来修改一下程序:
也就是用了密封类之后,我们在用when表达式时就可以不用else分支了,假如我们强行加上else则IDE会报冗余提示:
可以看一下我们的密封类和子类是定义在了一个文件当中,符合之前说的规定:
而如果说我们再定一个类,来继承密封类的子类,那就没有这个“必须定义到一个文件里”的限制了。
泛型(generics):
关于泛型是啥,用一句描述是:表示变量类型的参数化,其语法跟Java类似,如下:
上面泛型是一个完整的使用方式,其实可以精简一下,利用Kotlin的推断机制,如下:
协变[covariant]与逆变[controvariant]原理剖析:
关于泛型的使用其实很简单,但是!!如文章开头所说,一直理解不了在Java框架中很多使用泛型都会用<? extends T>和<? super T>,像Rxjava中:
所以这次抛开语言层面来对泛型这块的东东彻底把它搞清楚,也就是关于泛型的协变与逆变的概念,下面先从Java的具体泛型的示例中来开始一点点理解它:
一切很自然,但是!!!我们不能这样做:
这是为啥呢?假设这个等式成立的话,那可以这样写:
由于list2指向了list,那么我可以以list的角度来取数据,那么就会有:
为了解决这样的问题,Java提供了通配符,如下:
下面再以集合为例对其进行说明:
集合接口中定义了一个addAll()方法,可以添加现已经存在的集合, 下面定义一个添加方法:
很显然此添加方法在实际需求中是很常见的,这里就可以瞅一下JDK自带的Collection.addAll()方法的定义:
所以咱们校仿一下:
这样的话,我们就可以很安全的当E类型从集合中去读取,也就是会当Object的类型来读取,所以Collection<String>是Collection<? extends Object>的子类型,这种情况就叫做协变,它只会从集合中当成Object来读取元素,协变是针对读取的;而相反如果这样写的话则是逆变,逆变是针对写入的,如下:
也就是往集合中写元素时必须是String以上的类型,另外需要明白:我们如果只从中读取数据,而不往里面写入内容,那么这样的对象叫做生产者,也就是协变,此时使用 ? extends E;如果只向里面写入数据,而不从中读取数据,那么这样的对象叫做消费者,也就是逆变,使用? super E。貌似看标的这句话跟预想的理解有点出入,反正先记住这个结论。
下面来看一下在Kotlin中如何来解决协变和逆变的问题,如下:
一切如预期,接下来要改动程序了:
此时可以看到我们定义的泛型,在整个类中只有读取,没有写入,如下:
这其实是协变,这时如果在Java中就可以声明为? extents T,但是在Koltin中用它来表示协变:
这样就比Java直观,表示该泛型是要被读的,那如果给T增加一个写方法呢?
提示如下:
所以可见对于协变只能用到读,接下来定义一个逆变:
而由于Int的父类是Number,如下:
所以咱们改一下程序:
此时对应的也得改一下调用:
此时报错了,这里就可以加上in逆变关键字,如下:
Kotlin泛型与协变及逆变原理剖析的更多相关文章
- C#4.0泛型的协变,逆变深入剖析
C#4.0中有一个新特性:协变与逆变.可能很多人在开发过程中不常用到,但是深入的了解他们,肯定是有好处的. 协变和逆变体现在泛型的接口和委托上面,也就是对泛型参数的声明,可以声明为协变,或者逆变.什么 ...
- C#-弄懂泛型和协变、逆变
脑图概览 泛型声明和使用 协变和逆变 <C#权威指南>上在委托篇中这样定义: 协变:委托方法的返回值类型直接或者间接地继承自委托前面的返回值类型; 逆变:委托签名中的参数类型继承自委托方法 ...
- .NET 4.0中的泛型的协变和逆变
转自:http://www.cnblogs.com/jingzhongliumei/archive/2012/07/02/2573149.html 先做点准备工作,定义两个类:Animal类和其子类D ...
- Java用通配符 获得泛型的协变和逆变
Java对应泛型的协变和逆变
- 转载.NET 4.0中的泛型的协变和逆变
先做点准备工作,定义两个类:Animal类和其子类Dog类,一个泛型接口IMyInterface<T>, 他们的定义如下: public class Animal { } public ...
- Java泛型的协变与逆变
泛型擦除 Java的泛型本质上不是真正的泛型,而是利用了类型擦除(type erasure),比如下面的代码就会出现错误: 报的错误是:both methods have same erasure ...
- C# 泛型的协变和逆变
1. 可变性的类型:协变性和逆变性 可变性是以一种类型安全的方式,将一个对象当做另一个对象来使用.如果不能将一个类型替换为另一个类型,那么这个类型就称之为:不变量.协变和逆变是两个相互对立的概念: 如 ...
- C# 泛型的协变和逆变 (转载)
1. 可变性的类型:协变性和逆变性 可变性是以一种类型安全的方式,将一个对象当做另一个对象来使用.如果不能将一个类型替换为另一个类型,那么这个类型就称之为:不变量. 协变和逆变是两个相互对立的概念: ...
- c#-泛型、协变、逆变
泛型简单介绍: 可以使用泛型声明的元素:类.接口.方法.委托 泛型之前:泛型之前使用object封装不同类型的参数,缺点:性能差.运行时判断类型(不安全)...泛型是在编译期间转为实际类型副本,所以性 ...
随机推荐
- icheck判断是否选中
icheck判断是否选中 1 $("#id").on('ifChanged', function () { 2 if ($(this).is(':checked')) {//就 ...
- Android MVP框架实现登录案例
一.Model package com.czhappy.mvpdemo.model; /** * author: chenzheng * created on: 2019/5/16 11:06 * d ...
- Influx Sql系列教程八:query数据查询基本篇
前面几篇介绍了InfluxDB的添加,删除修改数据,接下来进入查询篇,掌握一定的SQL知识对于理解本篇博文有更好的帮助,下面在介绍查询的基础操作的同时,也会给出InfluxSql与SQL之间的一些差别 ...
- 在 Mac 系统下安装 PyCharm 的方法
首先,进入 PyCharm 的官网,PyCharm: Python IDE for Professional Developers by JetBrains. 如上图所示,直接点击DOWNLOAD N ...
- LeetCode 13. 罗马数字转整数(Roman to Integer)
13. 罗马数字转整数 13. Roman to Integer 题目描述 罗马数字包含以下七种字符: I,V,X,L,C,D 和 M. 字符 数值 I 1 V ...
- Spring Boot 项目中的 parent
前言 我们成功创建Spring Boot之后,pom.xml坐标文件中都会有如下一段引用: <parent> <groupId>org.springframework.boot ...
- Word样式教程
目录 写在前面 样式可以解决什么问题? 本文适合于 快速入门 一切皆样式 样式与格式的关系 如何修改样式 建立新的样式 样式的匹配和更新 根据样式更新所选段落 根据所选段落更新样式 小结 进一步了解 ...
- 企业级容器管理平台 Rancher 介绍入门及如何备份数据
企业级容器管理平台 Rancher 介绍入门及如何备份数据 是什么 Rancher 是一个为 DevOps 团队提供的完整的 Kubernetes 与容器管理解决方案的开源的企业级容器管理平台.它解决 ...
- 【题解】Luogu P5398 [Ynoi2018]GOSICK
原题传送门 二次离线莫队 二次离线莫队的做法参考第十四分块(前体)的题解 我们需要考虑从(1,i)如何推到(1,i+1) 我们算过了a[i]的答案,考虑加入a[i]的贡献 我们需要在a[i]的所有约数 ...
- [NOIP2018 PJ T4]对称二叉树
题目大意:问一棵有根带权二叉树中最大的对称二叉树子树,对称二叉树为需满足将这棵树所有节点的左右子树交换,新树和原树对应位置的结构相同且点权相等. 题解:在对称二叉树中,对于深度相同的两个节点$u,v$ ...