Codeforces Round #589 (Div. 2)-E. Another Filling the Grid-容斥定理
Codeforces Round #589 (Div. 2)-E. Another Filling the Grid-容斥定理
【Problem Description】
在\(n\times n\)的格子中填入\([1,k]\)之间的数字,并且保证每一行至少有一个\(1\),每一列至少有一个\(1\),问有多少种满足条件的填充方案。
【Solution】
令\(R[i]\)表示为第\(i\)行至少有一个\(1\)的方案数,\(C[i]\)表示第\(i\)列至少有一个\(1\)的方案数。则题目要求的就是\(\bigcap_{i=1}^nR[i]\cap C[i]\)。由容斥定理得:
\]
表示从\(n\)行中,选\(i\)行,从\(n\)列中选\(j\)列,选出\(n\cdot(i+j)-i\cdot j\)个格子不能放\(1\),这些格子有\((k-1)^{n\cdot (i+j)-i\cdot j}\)种放置方案,剩余的\(n^2-n\cdot (i+j)+i\cdot j\)有\(k^{n^2-n\cdot (i+j)+i\cdot j}\)种放置方案。
【Code】
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
typedef int Int;
#define int long long
#define maxn 1005
#define INF 0x3f3f3f3f
const int mod=1e9+7;
int bit[maxn][maxn];
int fpow(int a,int b){
int ans=1;a%=mod;
while(b){
if(b&1) (ans*=a)%=mod;
(a*=a)%=mod;
b>>=1;
}
return ans;
}
Int main(){
ios::sync_with_stdio(false);
cin.tie(0);
int n,k;cin>>n>>k;
for(int i=0;i<=n;i++) bit[i][0]=1;
for(int i=1;i<=n;i++){ //预处理组合数
for(int j=1;j<=i;j++){
bit[i][j]=(bit[i-1][j]+bit[i-1][j-1])%mod;
}
}
int ans=0;
for(int i=0;i<=n;i++){ //直接套公式即可
for(int j=0;j<=n;j++){
ans+=((i+j)&1?-1:1)*bit[n][i]%mod*bit[n][j]%mod*fpow(k,n*n-n*(i+j)+i*j)%mod*fpow(k-1,n*(i+j)-i*j)%mod;
ans%=mod;
}
}
cout<<(ans+mod)%mod<<endl;
return 0;
}
Codeforces Round #589 (Div. 2)-E. Another Filling the Grid-容斥定理的更多相关文章
- Codeforces Round #589 (Div. 2) E. Another Filling the Grid(DP, 组合数学)
链接: https://codeforces.com/contest/1228/problem/E 题意: You have n×n square grid and an integer k. Put ...
- Codeforces Round #589 (Div. 2) (e、f没写)
https://codeforces.com/contest/1228/problem/A A. Distinct Digits 超级简单嘻嘻,给你一个l和r然后寻找一个数,这个数要满足的条件是它的每 ...
- Codeforces Round #589 (Div. 2)
目录 Contest Info Solutions A. Distinct Digits B. Filling the Grid C. Primes and Multiplication D. Com ...
- Educational Codeforces Round 37 G. List Of Integers (二分,容斥定律,数论)
G. List Of Integers time limit per test 5 seconds memory limit per test 256 megabytes input standard ...
- Codeforces Round #589 (Div. 2) B. Filling the Grid
链接: https://codeforces.com/contest/1228/problem/B 题意: Suppose there is a h×w grid consisting of empt ...
- Codeforces Round #589 (Div. 2) Another Filling the Grid (dp)
题意:问有多少种组合方法让每一行每一列最小值都是1 思路:我们可以以行为转移的状态 附加一维限制还有多少列最小值大于1 这样我们就可以不重不漏的按照状态转移 但是复杂度确实不大行(减了两个常数卡过去的 ...
- Codeforces Round 589 (Div. 2) 题解
Is that a kind of fetishism? No, he is objectively a god. 见识了一把 Mcdic 究竟出题有多神. (虽然感觉还是吹过头了) 开了场 Virt ...
- Codeforces Round #589 (Div. 2) D. Complete Tripartite(染色)
链接: https://codeforces.com/contest/1228/problem/D 题意: You have a simple undirected graph consisting ...
- Codeforces Round #589 (Div. 2) C - Primes and Multiplication(数学, 质数)
链接: https://codeforces.com/contest/1228/problem/C 题意: Let's introduce some definitions that will be ...
随机推荐
- idea切换工作目录后无法重启问题记录
1.idea每次重新打开新项目或者切换新的工作空间后,总是半天起不来.有时候知道是缓存或者其他的问题,有时候莫名其妙就好了. 本次原因是:
- [简短问答]lodop打印过慢或有进度条
问法1:打印预览显示进度条,过慢出现进度条,打印过慢,可能和很多原因有关:打印内容或样式或图片等过多,有需要下载有脚步执行或本身网络慢:机器性能过低 系统ie有问题或缓存过多:或使用的是共享打印机.如 ...
- [编程开发]STB image读取学习
为了便于学习图像处理并研究图像算法, 俺写了一个适合初学者学习的小小框架. 麻雀虽小五脏俱全. 采用的加解码库:stb_image 官方:http://nothings.org/ stb_image. ...
- 看看这5个最容易犯的Java错误,你犯了没?
人非圣贤,孰能无过.都说Java语言是一门简单的编程语言,基于C++演化而来,剔除了很多C++中的复杂特性,但这并不能保证Java程序员不会犯错.那么对于广大的Java程序员来说,它们最容易犯的几个错 ...
- Spell It Right
Given a non-negative integer N, your task is to compute the sum of all the digits of N, and output e ...
- python 浅拷贝和深拷贝(9)
何谓浅拷贝/深拷贝,说得直白一点,其实就是数据拷贝,两者到底有什么区别呢?听着就挺迷糊的,python开发项目的时候说不定你就能碰上这样的坑~~ 一.普通的变量赋值 我们平常使用的变量赋值就是 ...
- LeetCode 32. 最长有效括号(Longest Valid Parentheses) 31
32. 最长有效括号 32. Longest Valid Parentheses 题目描述 给定一个只包含 '(' 和 ')' 的字符串,找出最长的包含有效括号的子串的长度. 每日一算法2019/6/ ...
- 如何创建Kafka客户端:Avro Producer和Consumer Client
1.目标 - Kafka客户端 在本文的Kafka客户端中,我们将学习如何使用Kafka API 创建Apache Kafka客户端.有几种方法可以创建Kafka客户端,例如最多一次,至少一次,以及一 ...
- new/delete与命名空间
目录 1. new/delete 2. 命名空间 1. new/delete C++中的动态内存分配 C++通过new关键字进行动态内存申请 C++中的动态内存申请是基于类型进行的 delete关键字 ...
- Django项目常见面试问题
1.python中的lambda是什么意思,可以举例 匿名函数 a = lambda x:x+1 print(a(1)) 2.请写出以下代码执行的结果 class Parent(object): x ...