D1

T1l

\(des:\)

给出一棵树,判断树上两条路径是否相交

\(sol:\)

判断其中一条路径的两个端点以及两端点的 \(lca\) 是否存在于另一条链上

由于这是一棵树,任一点为根后这样判断一定是可行的,不存在两条链是一个 \(\times\) 的形态

判断点是否在树上的一条路径上的时间复杂度为 \(O(logn)\),树剖处理出所有的链,判断该点是否存在于某一区间即可

T2

\(des\)

定义 \(f(l, r) = max(a_i - a_j), 其中 l <= i,j <= r\)

求 \[\sum_{i = 1} ^ {n} \sum_{j = i} ^ {n} f(i, j)\]

\(sol\)

考虑转化

该问题等价于所有区间的最大值 - 所有区间的最小值

这样的话考虑每个点作为区间最大值所带来的贡献

记 \(pre_i\) 表示最大的 \(j\) 使得 \(a_j > a_i 且 j <= i\)

记 \(bhd_i\) 表示最小的 \(j\) 使得 \(a_j > a_i 且 j >= i\)

显然 \(a_i\) 所产生的贡献为 \((i - pre_i + 1 + bhd_i - i + (i - pre_i) * (bhd_i - i)) * a_i\)

对于最小值产生的负贡献依旧如此

对于 \(pre, bhd\) 可以用单调栈线性求出

T3

\(des\)

给出一棵树

定义 \(f(l, r)\) 表示为了使得 \([l, r]\) 号点联通所需要的最小边数

求 \[\sum_{i = 1} ^ {n} \sum_{j = i} ^ {n} f(i, j)\]

\(sol\)

D2

T1

\(des\)
二位直角坐标系上存在两点 \((x_1, y_1) (x_2, y_2)\)
每次可以使得 \(x_1 + 1, y + 1\) 或者 \(x_1 + 1, y_1 - 1\) 使得较靠左下角的点到达较靠右上角的点
只有一次使得 \(x_1 + 1\) 或者 \(y_1 + 1\) 的机会

\(sol\)

首先可以给方格黑白染色,发现两个颜色的点无法相互到达。如果起点和终点是不同色的,可以使用一次上下左右走的机会,使两个点位于处于同样的颜色。分别计算向上下左右走后的花费,取最小值。

考虑计算花费:
如果可以题目是上下左右走,那么两点的花费就是 \(abs(s1-s2)+abs(t1-t2)\) 。
那么斜着走也是同理,假设将方格旋转 \(45\) 度,求出旋转后的坐标,答案同样可以使用上面的公式。
其实std只需要一行

T2

\(des\)
存在长度为 \(l1 >= 3\) 的字符串 \(s1\),
向其后添加长度为 \(l2 = 2 或 3\) 的字符串 \(s2\)
求所有可能的 \(s2\)
相邻的 \(s2\) 不能相同
相同就很简单啦

\(sol\)

最重要的一点就是 \(s1\) 任意
这样的话对于一个位置 \(x\), 若用 \(x\) 当做某种 \(s2\) 的首字母
只需要满足该字符串的后面的字符串全部合法就可以了
因为前面的只要长度 \(>= 3\) 都可以当做某个 \(s1\)
从后往前 dp
\(f2\) 表示 \(i, i +1\) 可以计入答案
\(f3\) 表示 \(i, i +1, i + 2\) 可以计入答案
转移

A tow-day exam的更多相关文章

  1. Linux学习之Exam系统发布

    配置时间:2015年11月27日 配置人:撰写人:微冷的雨   Happy 01.Linux安装图 欢迎页面 桌面 02.Linux命令之文件目录操作 给北大青鸟五道口校区创建三个机房(L4,L5,L ...

  2. CF534A Exam 构造

    An exam for n students will take place in a long and narrow room, so the students will sit in a line ...

  3. CF Exam (数学)

     Exam time limit per test 1 second memory limit per test 256 megabytes input standard input output s ...

  4. Exam 70-462 Administering Microsoft SQL Server 2012 Databases 复习帖

    好吧最近堕落没怎么看书,估计这个月前是考不过了,还是拖到国庆之后考试吧.想着自己复习考试顺便也写点自己的复习的概要,这样一方面的给不准备背题库的童鞋有简便的复习方法(好吧不被题库的同学和我一样看MSD ...

  5. Final Exam Arrangement(ZOJ)

    In Zhejiang University, there are N different courses labeled from 1 to N. Each course has its own t ...

  6. 有感PMI Exam Dev Workshop

    有幸參加了PMI协会在上海举办的PMI Exam Development Workshop活动.这是PMI协会第二次在中国举办此活动,上一次是2009年北京. 我第一次參加,感觉收获非常多. 我们知道 ...

  7. Exam(贪心)

    Exam Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submis ...

  8. B题 Before an Exam

    Description Tomorrow Peter has a Biology exam. He does not like this subject much, but d days ago he ...

  9. HDU 5240 Exam

    The 2015 ACM-ICPC China Shanghai Metropolitan Programming Contest 2015ACM-ICPC上海大都会赛 签到题 #include< ...

  10. 考分鄙视(exam)

    考分鄙视(exam) 题目描述 Whence这个学期考了n次试,每一次都有一个0-20000之间的整数分数.Whence本来的状态应该是每一次考试都比前一次多一分(除第一次),但由于他很不稳定,偏差可 ...

随机推荐

  1. Selenium 配置IE浏览器

    1.安装selenium pip install selenium 2.安装IE浏览器driver http://selenium-release.storage.googleapis.com/ind ...

  2. 全栈项目|小书架|服务器开发-Koa2 连接MySQL数据库(Navicat+XAMPP)

    为什么使用数据库 为什么需要数据库?-知乎 相比与文件系统,数据库具有以下优势: 高效率:查找效率高 高可用:可数据库共享 安全性强:数据不能随意修改 选择哪个数据库 数据库可以分为关系型数据库和非关 ...

  3. wpf Log4net的配置和使用

    现在项目涉及的是cs客户端,在项目中使用log4net记录本地日志和异常信息,这里项目做完了,想着自己做一个demo,测试记录一下log4Net的配置使用. 第一步.新建一个wpf应用程序,项目右键 ...

  4. java之struts2之数据检验

    1.使用struts2时,有时候需要对数据进行相关的验证.如果对数据的要求比较严格,或对安全性要求比较高时,前端 js 验证还不够, 需要在后端再进行一次验证,保证数据的安全性. 2.struts2提 ...

  5. 私有属性和私有方法l

    class Woman: def __init__(self, name): self.name=name self.__age=18 def __secret(self): print(" ...

  6. OpenWrt 中查看 Flash RAM CPU 信息

    OpenWrt 中查看 Flash RAM CPU 信息 来源  https://blog.csdn.net/mcusun2000/article/details/51130434 硬件: QCA95 ...

  7. Web应用的生命周期(客户端)

    典型的一个Web应用的生命周期从用户在浏览器输入一串URL,或者单击一个链接开始(就是访问一个页面).而这个生命周期的结束就是我们关闭这个页面. 响应流程: 用户输入一个 URL(生命周期开始) 客户 ...

  8. Oracle 创建数据表

    数据库中的每一个表都被一个模式(或用户)所拥有,因此表是一种典型的模式对象.在创建数据表时,Oracle 将在一个指定的表空间中为其分配存储空间.最初创建的表时一个空的逻辑存储结构,其中不包含任何数据 ...

  9. UCOSIII信号量

    信号量通常分为两种 二进制信号量 计数型信号量 二进制信号量 二进制信号量只能取0和1两个值 计数型信号量 计数型信号量的范围由OS_SEM_CTR决定.OS_SEM_CTR可以为8位,16位和32位 ...

  10. 开发QQ互联ios版Ane扩张 辛酸史

    来源:http://www.myexception.cn/operating-system/1451490.html 开发QQ互联ios版Ane扩展 辛酸史 开发QQ互联ios版Ane扩展辛酸史: 1 ...