import numpy as np

File Input and Output

NumPy is able to save and load data to and from disk either in text or binary format. In this section I only discuss NumPy's built-in binary format, since most users wil prefer pandas and other tools for loading text or tabular data.

np.save and np.load are the two workhorse functions(主要的函数) for efficiently saving and loading array data on disk. Arrays are saved by default in an uncompressed(未压缩的) raw binary format with file extension .npy:

arr = np.arange(10)

"保存数组"
np.save('../examples/some_arry', arr)
'保存数组'

If the file path does not already end in .npy, the extension will be appended. The array o disk can then be oaded with np.load.

np.load('../examples/some_array.npy')
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], dtype=int64)

You save multiple arrays in an uncompressed(未解压的) archive using np.savez and passing the arrays as keyword arguments:

When loading an .npz file, you get back a dict-like object that loads the individual(个别的) arrays lazily.

np.savez("../examples/array_archive.npz", a=arr, b=arr)
arch = np.load('../examples/array_archive.npz')

'多个数组取出时, 是惰性加载的, 类似生成器'
arch['b']
'多个数组取出时, 是惰性加载的, 类似生成器'
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

if your data compresses well, you may wish to use numpy.savez_compressed instead:

np.savez_compressed('../examples/arrays_compressed.npz', a=arr, b=arr)

Linear Algebra

Linear algera, like matrix multiplication(乘法), decompositions(分解), determinats(秩), and other square matrix math, is an important part of any array library. Unlike some languages lile MATLIB, multiplying two, two-dimensional array with * is an element-wise product instead of a matrix dot product.(python 中的星号, 表示两个数组的对应元素乘, 而非矩阵乘哦) Thus, there is a function dot, both an array method and a function in the numpy namespace, for matrix multiplication.

"2x3"
x = np.array([[1,2,3], [4,5,6]]) "3x2"
y = np.array([[6,23], [-1,7], [8,9]]) x
y
'2x3'
'3x2'
array([[1, 2, 3],
[4, 5, 6]])
array([[ 6, 23],
[-1, 7],
[ 8, 9]])
"2x3 * 3x2 = 2x2, 对左边列向量的线性组合嘛"
x.dot(y) "x.dot(y) is equivalent to np.dot(x,y)"
np.dot(x,y)
'2x3 * 3x2 = 2x2, 对左边列向量的线性组合嘛'
array([[ 28,  64],
[ 67, 181]])
'x.dot(y) is equivalent to np.dot(x,y)'
array([[ 28,  64],
[ 67, 181]])

A matrix product between a two-dimensional array and a suitably sized one-dimensional array results in a one-dimensional array:

np.dot(x, np.ones(3))
array([ 6., 15.])

The @ symbol also works as an infix operator(强制插入) that performs matrix multiplication:

x @ np.ones(3)
array([ 6., 15.])

numpy.linalg has a stardard set of matrix decompositions and things like inverse and determinant. These are implemented(被运行) under the hood via(通过) the same industry-standard linear algebra libraies used in other languages like MATLAB and R.. -> Python的这些矩阵的函数都是和像这样的语言用的同一个标准.

from numpy.linalg import inv, qr

x = np.random.randn(5,5)

"计算内积 $A^TA$"
mat = x.T.dot(x) '矩阵求逆 inv'
inv(mat)
'计算内积 $A^TA$'
'矩阵求逆 inv'
array([[ 2.85462863, -0.08842397, -0.01719878,  0.28840731,  1.33531619],
[-0.08842397, 0.36385157, 0.05790547, 0.21733807, -0.04179607],
[-0.01719878, 0.05790547, 0.16845103, 0.03607368, -0.07364311],
[ 0.28840731, 0.21733807, 0.03607368, 0.33697629, 0.22115989],
[ 1.33531619, -0.04179607, -0.07364311, 0.22115989, 0.89288396]])
"矩阵与其逆的积-> 单位阵"
mat.dot(inv(mat)) '矩阵的QR分解, Q是正交矩阵, R是上三角矩阵'
q, r = qr(mat) q
r
'矩阵与其逆的积-> 单位阵'
array([[ 1.00000000e+00, -1.34588695e-17,  1.20337000e-17,
1.43461087e-16, 1.19991758e-16],
[-1.44647137e-16, 1.00000000e+00, -2.44723192e-19,
-3.05504861e-16, 1.85480504e-17],
[-5.64972079e-16, 1.06290868e-17, 1.00000000e+00,
-1.24805205e-17, -1.52382375e-17],
[ 2.64575648e-17, -3.37897541e-18, -3.46206228e-17,
1.00000000e+00, -2.61606309e-16],
[-4.05280510e-16, -4.83836278e-17, 2.70272255e-17,
-3.85392887e-17, 1.00000000e+00]])
'矩阵的QR分解, Q是正交矩阵, R是上三角矩阵'

array([[-0.49090965, -0.10814586, -0.24518935,  0.10423654,  0.82239231],
[ 0.00323168, -0.7867822 , -0.00793056, -0.61663426, -0.02574129],
[ 0.32640742, 0.12703087, -0.92399902, -0.14659492, -0.04535519],
[-0.1390847 , 0.59414019, 0.14745407, -0.76639263, 0.13620759],
[ 0.79568267, -0.01178262, 0.25357916, -0.00701326, 0.54990788]])
array([[-2.59814895,  1.59367406,  4.62351953, -3.75681459,  6.16316304],
[ 0. , -7.15657133, 0.57430456, 7.77949798, -2.22774585],
[ 0. , 0. , -6.05158388, 1.46469814, -0.57791469],
[ 0. , 0. , 0. , -2.70965304, 0.66330379],
[ 0. , 0. , 0. , 0. , 0.61587833]])

The express x.T.dot(x) computes the dot product of x with its transpose x.T

See Table 4-7 for a list of some of the most commonly used linear algbrea functions.

  • diag 对角化
  • dot 矩阵乘法

  • trace 迹: Compute the sum of the diagonal elements
  • det 行列式 Compute the matrix determinant
  • inv 逆 Compute the inverse of a square matrix

  • eig, qr, svd 矩阵的谱分解, QR分解, SVD 分解
  • solve 线性方程的解 Solve the linear system Ax=b for x where A is a square matrix

  • lstsq 最小二乘近似解 Compute the least-squares solution to Ax=b

NumPy 之 存储文件和线性代数的更多相关文章

  1. Numpy入门(三):Numpy概率模块和线性代数模块

    Numpy中经常使用到的两个模块是概率模块和线性代数模块,random 和 linalg 两个模块. 概率模块 产生二项分布的随机数:np.random.binomial(n,p,size=-),其中 ...

  2. python之numpy的基本使用

    https://blog.csdn.net/cxmscb/article/details/54583415 一.numpy概述 numpy(Numerical Python)提供了python对多维数 ...

  3. AI炼丹 - 深度学习必备库 numpy

    目录 深度学习必备库 - Numpy 1. 基础数据结构ndarray数组 1.1 为什么引入ndarray数组 1.2 如何创建ndarray数组 1.3 ndarray 数组的基本运算 1.4 n ...

  4. 利用Python进行数据分析(1) 简单介绍

    一.处理数据的基本内容 数据分析 是指对数据进行控制.处理.整理.分析的过程. 在这里,“数据”是指结构化的数据,例如:记录.多维数组.Excel 里的数据.关系型数据库中的数据.数据表等. 二.说说 ...

  5. 笔记之Python网络数据采集

    笔记之Python网络数据采集 非原创即采集 一念清净, 烈焰成池, 一念觉醒, 方登彼岸 网络数据采集, 无非就是写一个自动化程序向网络服务器请求数据, 再对数据进行解析, 提取需要的信息 通常, ...

  6. 利用Python进行数据分析——重要的Python库介绍

    利用Python进行数据分析--重要的Python库介绍 一.NumPy 用于数组执行元素级计算及直接对数组执行数学运算 线性代数运算.傅里叶运算.随机数的生成 用于C/C++等代码的集成 二.pan ...

  7. AI - TensorFlow - 张量(Tensor)

    张量(Tensor) 在Tensorflow中,变量统一称作张量(Tensor). 张量(Tensor)是任意维度的数组. 0阶张量:纯量或标量 (scalar), 也就是一个数值,例如,\'Howd ...

  8. 第01章 准备工作.md

    第1章 准备工作 1.1 本书的内容 本书讲的是利用Python进行数据控制.处理.整理.分析等方面的具体细节和基本要点.我的目标是介绍Python编程和用于数据处理的库和工具环境,掌握这些,可以让你 ...

  9. AI之路,第一篇:python数学知识1

    python 数学知识1 1,向量: 一个向量是一列数.这些数是有序排列的:通过次序中的索引,可以确定每个单独的数: 2, 矩阵: 由m x n 个数aij(i=1,2,3,…, m;  j=1,2, ...

随机推荐

  1. learning shell check requires root privileges

    [Purpose]        Shell script check requires root privileges   [Eevironment]        Ubuntu 16.04 bas ...

  2. Layui 必填验证

    lay-verify="required"

  3. Oralce 学习笔记

    1. Oracle 数据库文件后缀是什么格式? 数据文件是以oracle自定义的格式存储的,没有固定的后缀名,一般通用的为.dbf和.ora而默认是dbf的 2.Database Configurat ...

  4. ELK原理

    为什么要使用Elasticsearch?​ 因为在我们中的数据,会随着时间变的非常多,若采用以往的模糊查询,模糊查询前置通配符,如:"%aa%",会放弃索引,导致数据表查询将变成全 ...

  5. 深度学习之TCN网络

    论文链接:https://arxiv.org/pdf/1803.01271.pdf TCN(Temporal Convolutional Networks) TCN特点: 可实现接收任意长度的输入序列 ...

  6. QHBoxLayout 、QFormLayout 遍历子部件,查找QLineEdit控件

    布局如下: QLineEdit * edit1 = new QLineEdit; QLineEdit * edit2 = new QLineEdit; QLineEdit * edit3 = new ...

  7. Android 从零编写一个带标签 TagTextView

    最近公司的项目升级到了 9.x,随之而来的就是一大波的更新,其中有个比较明显的改变就是很多板块都出了一个带标签的设计图,如下: 怎么实现 看到这个,大多数小伙伴都能想到这就是一个简单的图文混排,不由得 ...

  8. 【神经网络与深度学习】neural-style、chainer-fast-neuralstyle图像风格转换使用

    neural-style 官方地址:这个是使用torch7实现的;torch7安装比较麻烦.我这里使用的是大神使用TensorFlow实现的https://github.com/anishathaly ...

  9. python三级联动

    #以字典的形式 保存相关省市数据 menu={ '北京':{ '朝阳':{ '国贸':{ 'CICC':{}, 'HP':{}, '银行':{}, 'CCTV':{} }, '望京':{ '陌陌':{ ...

  10. sql优化(原理,方法,特点,实例)

    整理的有点多,做好心理准备...... 1.资源优化理解: 不同设备,io不同.每种设备都有两个指标:延时(响应时间):表示硬件的突发处理能力:带宽(吞吐量):代表硬件持续处理能力. 每种硬件主要的工 ...