ubuntu之路——day8.1 深度学习优化算法之mini-batch梯度下降法
所谓Mini-batch梯度下降法就是划分训练集和测试集为等分的数个子集,比如原来有500W个样本,将其划分为5000个baby batch,每个子集中有1000个样本,然后每次对一个mini-batch进行梯度下降
mini-batch大小 = m:
极限情况下,当mini-batch的单个子集样本数量和原集合大小一致都为m时,也就是说对原样本只划分一个子集,这意味着没有划分,此时的梯度下降法为原始的Batch梯度下降
batch方法意味着每次迭代对大量的数据进行处理,这意味着在进行深度神经网络训练海量数据的时候需要花费很多很多时间,当然在数据集较小的时候这种方法很精确
mini-batch大小 = 1:
另一种极限情况下,当mini-batch的单个子集样本数量等于1的时候,也就是说对有m个样本的原集合划分m个子集的时候,此时的梯度下降法为随机梯度下降法
随机梯度下降法意味着失去了向量化运算带来的加速效果,因为基本上这就等于每次运算1个样本的数据。还有一个缺点在于,这种情况下的总体收敛方向是向中心的,但是由于每次训练某一个样本,所以会呈现波动的趋势,最终也不会收敛于极小值点,而是在极小值点附近波动。
所以综上所述,一般而言最好选择不大不小的mini-batch的大小,这会带来较好的学习速率。其原因在于mini-batch的单个子集比如1000个样本可以进行向量化运算加快单次运算的速度,其次有可能不用等待所有样本训练完毕就可以收敛,因为此时单次操作的都是每个子集。
那么,如何选择一个合适的mini-batch大小呢?
1.如果训练集较小(通常来说其样本数量m < 2000)直接使用batch,也就是说mini-batch大小等于m
2.典型的mini-batch大小:考虑到计算机运行方式将其设置为2的次方,如64、128、256、512、1024(较为少见),同时要考虑到mini-batch的大小应当小于CPU/GPU的内存(这在图片处理等占用大量存储空间的计算中很重要)
当然,在实际操作中还有一种比mini-batch表现更加高效的优化算法,稍后请参见我的day8.2博文
ubuntu之路——day8.1 深度学习优化算法之mini-batch梯度下降法的更多相关文章
- ubuntu之路——day8.2 深度学习优化算法之指数加权平均与偏差修正,以及基于指数加权移动平均法的动量梯度下降法
首先感谢吴恩达老师的免费公开课,以下图片均来自于Andrew Ng的公开课 指数加权平均法 在统计学中被称为指数加权移动平均法,来看下面一个例子: 这是伦敦在一些天数中的气温分布图 Vt = βVt- ...
- 从 SGD 到 Adam —— 深度学习优化算法概览(一) 重点
https://zhuanlan.zhihu.com/p/32626442 骆梁宸 paper插画师:poster设计师:oral slides制作人 445 人赞同了该文章 楔子 前些日在写计算数学 ...
- [DeeplearningAI笔记]改善深层神经网络_优化算法2.1_2.2_mini-batch梯度下降法
觉得有用的话,欢迎一起讨论相互学习~Follow Me 2.1 mini-batch gradient descent mini-batch梯度下降法 我们将训练数据组合到一个大的矩阵中 \(X=\b ...
- ubuntu之路——day9.1 深度学习超参数的调优
参数重要性: 第一阶:α即learning rate 第二阶:momentum中的β,hidden units的数量,mini-batch的大小 第三阶:hidden layers的数量,learni ...
- 深度学习面试题03:改进版梯度下降法Adagrad、RMSprop、Momentum、Adam
目录 Adagrad法 RMSprop法 Momentum法 Adam法 参考资料 发展历史 标准梯度下降法的缺陷 如果学习率选的不恰当会出现以上情况 因此有一些自动调学习率的方法.一般来说,随着迭代 ...
- 深度学习优化算法Momentum RMSprop Adam
一.Momentum 1. 计算dw.db. 2. 定义v_db.v_dw \[ v_{dw}=\beta v_{dw}+(1-\beta)dw \] \[ v_{db}=\beta v_{db}+( ...
- 吴恩达深度学习:2.9逻辑回归梯度下降法(Logistic Regression Gradient descent)
1.回顾logistic回归,下式中a是逻辑回归的输出,y是样本的真值标签值 . (1)现在写出该样本的偏导数流程图.假设这个样本只有两个特征x1和x2, 为了计算z,我们需要输入参数w1.w2和b还 ...
- 深度学习——优化器算法Optimizer详解(BGD、SGD、MBGD、Momentum、NAG、Adagrad、Adadelta、RMSprop、Adam)
在机器学习.深度学习中使用的优化算法除了常见的梯度下降,还有 Adadelta,Adagrad,RMSProp 等几种优化器,都是什么呢,又该怎么选择呢? 在 Sebastian Ruder 的这篇论 ...
- Ubuntu 14.04 安装caffe深度学习框架
简介:如何在ubuntu 14.04 下安装caffe深度学习框架. 注:安装caffe时一定要保持网络状态好,不然会遇到很多麻烦.例如下载不了,各种报错. 一.安装依赖包 $ sudo apt-ge ...
随机推荐
- SVN commit:remains in tree-conflict错误的解决办法
转自:https://chenjinbo1983.iteye.com/blog/2005123 昨天在提交一个新类包的时候,出错了,重新提交了几次也不行. 错误是:Aborting commit: ‘ ...
- vue-cli脚手架——3.0版本项目案例
一.[准备工作] node与git部分见vue-cli2.0搭建案例 vue-cli3.0是一个基于 Vue.js 进行快速开发的完整系统.有三个组件: CLI:@vue/cli 全局安装的 npm ...
- SpringCloud_Eureka与Zookeeper对比
关系型数据库与非关系型数据库及其特性: RDBMS(Relational Database Management System 关系型数据库) :mysql/oracle/sqlServer等 = ...
- 安装k8s,单master脚本
这个以一个普通xxx帐户运行即可. 因为上面root帐号作了sudoer的操作的. 还有,最好将xxx帐号加入docker组,这样xxx也可以执行docker命令了. 可以看到,这个脚本还需要其它目录 ...
- #2590. 「NOIP2009」最优贸易
C 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这 m 条道路中有一部分为单向通行的道路,一部分为双向通行的道路,双向通行的道 ...
- LGOJP1941 飞扬的小鸟
题目链接 题目链接 题解 \(f[i][j]\)表示位置\((i,j)\)到达需要的最小点击数. \(f[i][j]=\min\{{f[i-1][j-kx]+k},f[i-1][j+y]\}\) \( ...
- DT6.0下搜索页解决canonical获取乱码问题
最近研究dt6.0,官方内核默认是把搜索页屏蔽的,但是做seo的人都知道,搜索页聚合是争取排名的好地方,所以我就二次开发搜索页,具体可以查看前几期分享的,今天说说关于搜索的canonical的url乱 ...
- SVM: 直观上理解大间距分类器
在SVM中,增加安全的间距因子 那么增加了这个间距因子后,会出现什么样的结果呢,我们将C设置为很大(C=100000) SVM决策边界 当我们将C设置得很大进,要想SVM的cost function最 ...
- 行为型模式(三) 迭代器模式(Iterator)
一.动机(Motivate) 在软件构建过程中,集合对象内部结构常常变化各异.但对于这些集合对象,我们希望在不暴露其内部结构的同时,可以让外部客户代码透明地访问其中包含的元素:同时这种"透明 ...
- cookie,session,token介绍
本文目录 发展史 Cookie Session Token 回到目录 发展史 1.很久很久以前,Web 基本上就是文档的浏览而已, 既然是浏览,作为服务器, 不需要记录谁在某一段时间里都浏览了什么文档 ...