「NOI2007」 货币兑换

题目描述

小 Y 最近在一家金券交易所工作。该金券交易所只发行交易两种金券:A 纪念券(以下简称 A 券)和 B 纪念券(以下简称 B 券)。每个持有金券的顾客都有一个自己的帐户。金券的数目可以是一个实数。

每天随着市场的起伏波动,两种金券都有自己当时的价值,即每一单位金券当天可以兑换的人民币数目。我们记录第 K 天中 A 券和 B 券的价值分别为 $A_K$ 和$B_K$ (元/单位金券)。

为了方便顾客,金券交易所提供了一种非常方便的交易方式:比例交易法。

比例交易法分为两个方面:

a) 卖出金券:顾客提供一个[0,100]内的实数 OP 作为卖出比例,其意义为:将 OP%的 A 券和 OP%的 B 券以当时的价值兑换为人民币;

b) 买入金券:顾客支付 IP 元人民币,交易所将会兑换给用户总价值为IP 的金券,并且,满足提供给顾客的 A 券和 B 券的比例在第 K 天恰好为 $Rate_K$;

例如,假定接下来 3 天内的 $A_k$ 、$B_k$ 、$Rate_K$ 的变化分别为:

时间 $A_k$ $B_k$ $Rate_k$
第一天 1 1 1
第二天 1 2 2
第三天 2 2 3

假定在第一天时,用户手中有 100 元人民币但是没有任何金券。

用户可以执行以下的操作:

时间 用户操作 人民币(元) A券的数量 B券的数量
开户 $100$ 0 0
第一天 买入 $100$元 0 50 50
第二天 卖出 $50\%$ 75 25 25
第二天 买入 $60$元 15 55 40
第三天 卖出 $100\%$ 205 0 0

注意到,同一天内可以进行多次操作。

小 Y 是一个很有经济头脑的员工,通过较长时间的运作和行情测算,他已经知道了未来 N 天内的 A 券和 B 券的价值以及 Rate。他还希望能够计算出来,如果开始时拥有 S 元钱,那么 N 天后最多能够获得多少元钱。

输入输出格式

输入格式:

第一行两个正整数 N、S,分别表示小 Y 能预知的天数以及初始时拥有的钱数。

接下来 N 行,第 K 行三个实数 $A_K$ 、$B_K$ 、$Rate_K$ ,意义如题目中所述。

输出格式:

只有一个实数 MaxProfit,表示第 N 天的操作结束时能够获得的最大的金钱数目。答案保留 3 位小数。

输入输出样例

输入样例#1:
复制

3 100
1 1 1
1 2 2
2 2 3
输出样例#1:
复制

225.000

说明

时间 用户操作 人民币(元) A 券的数量 B 券的数量

开户 无 100 0 0

第一天 买入 100 元 0 50 50

第二天 卖出 100% 150 0 0

第二天 买入 150 元 0 75 37.5

第三天 卖出 100% 225 0 0

本题没有部分分,你的程序的输出只有和标准答案相差不超过$0.001$时,才能获得该测试点的满分,否则不得分。

测试数据设计使得精度误差不会超过 $10^{-7}$ 。

对于 40%的测试数据,满足 N ≤ 10;

对于 60%的测试数据,满足 N ≤ 1 000;

对于 100%的测试数据,满足 N ≤ 100 000;

对于 100%的测试数据,满足:

0 < $A_K$ ≤ 10;

0 < $B_K$ ≤ 10;

0 < $Rate_K$ ≤ 100

MaxProfit ≤ $10^9$ ;

输入文件可能很大,请采用快速的读入方式。

必然存在一种最优的买卖方案满足:

每次买进操作使用完所有的人民币;

每次卖出操作卖出所有的金券。

litble的题解

斜率优化

首先,由于如果在\(i\)天买在\(j\)天卖有利可图,那么最优方法就是在i天花完钱在j天卖完。我们令\(f_i\)为第\(i\)天可以得到的最多钱数,然后可以先列方程求出花完钱在第\(j\)天得到的两种金券数\(x_j=\frac{f_jR_j}{a_jR_j+b_j}\)和\(y_j=\frac{f_j}{a_jR_j+b_j}\),然后得到状态转移方程:\(f_i=x_ja_i+y_jb_i\)

将方程稍微变形成直线斜截式方程:\(y_j=-\frac{a_ix_j}{b_i}+\frac{f_i}{b_i}\),可以知道,对于平面上众多的点\((x_j,y_j)\),我们每次用一条斜率为\(-\frac{a_i}{b_i}\)的直线去切它们中的一个,可以求得最大截距的点即为最优决策。

如何求得最大截距呢?以下我们将斜率为\(-\frac{a_i}{b_i}\)的直线称为当前直线。

现在我们维护点之间的一个凸包,如果对于点j,其左边的线斜率小于当前直线,那么显然把当前直线移到左边的点截距更大(建议自己画图理解)。如果其右边的线斜率大于当前直线,那么将其右移更优。

CDQ分治维护

我们可以对决策的时间进行二分,对于左半边区间,首先求出它们的dp值,右半边区间维持\(k_i=-\frac{a_i}{b_i}\)的有序,左半边区间维持\(x_i\)的有序。

我们可以开一个栈来维护左半边区间的斜率单调递减的凸包。

对于右半边区间,由于\(k\)值排了序,所以可以\(O(n)\)查询。查询方法就是关于斜率优化的分析的倒数第二段的内容。

时间复杂度\(O(n\log n)\),CDQ分治无论何时看都很巧妙。

#include<bits/stdc++.h>
#define co const
#define il inline
template<class T>T read(){
T x=0,w=1;char ch=getchar();
for(;!isdigit(ch);ch=getchar())if(ch=='-') w=-w;
for(;isdigit(ch);ch=getchar()) x=x*10+ch-'0';
return x*w;
}
template<class T>T read(T&x){
return x=read<T>();
}
using namespace std; co double eps=1e-9,inf=1e9;
co int N=100000+1;
int n,st[N];double dp[N];
struct node {double k,x,y,a,b,r;int id;}qry[N],tmp[N]; double slope(int i,int j){
if(fabs(qry[i].x-qry[j].x)<=eps) return inf;
return (qry[j].y-qry[i].y)/(qry[j].x-qry[i].x);
}
void solve(int l,int r){
if(l==r){ //那么在l之前的所有询问都已经处理完毕,可以更新l的答案了
dp[l]=max(dp[l],dp[l-1]);
qry[l].y=dp[l]/(qry[l].a*qry[l].r+qry[l].b),qry[l].x=qry[l].y*qry[l].r;
return;
}
int mid=(l+r)>>1,ql=l,qr=mid+1;
for(int i=l;i<=r;++i){
if(qry[i].id<=mid) tmp[ql++]=qry[i];
else tmp[qr++]=qry[i];
}
copy(tmp+l,tmp+r+1,qry+l);
solve(l,mid);
int top=0;
for(int i=l;i<=mid;++i){
while(top>=2&&slope(st[top],i)+eps>slope(st[top-1],st[top])) --top;
st[++top]=i;
}
for(int i=mid+1;i<=r;++i){
while(top>=2&&slope(st[top-1],st[top])<=qry[i].k+eps) --top;
int j=st[top];
dp[qry[i].id]=max(dp[qry[i].id],qry[j].x*qry[i].a+qry[j].y*qry[i].b);
}
solve(mid+1,r);
ql=l,qr=mid+1;
for(int i=l;i<=r;++i){
if(ql<=mid&&(qr>r||qry[ql].x<qry[qr].x+eps)) tmp[i]=qry[ql++];
else tmp[i]=qry[qr++];
}
copy(tmp+l,tmp+r+1,qry+l);
} il bool cmp_k(co node&a,co node&b){
return a.k<b.k;
}
int main(){
scanf("%d%lf",&n,dp);
for(int i=1;i<=n;++i){
scanf("%lf%lf%lf",&qry[i].a,&qry[i].b,&qry[i].r);
qry[i].k=-qry[i].a/qry[i].b,qry[i].id=i;
}
sort(qry+1,qry+n+1,cmp_k),solve(1,n);
printf("%.3lf\n",dp[n]);
return 0;
}

「NOI2007」 货币兑换的更多相关文章

  1. loj2353. 「NOI2007」 货币兑换

    loj2353. 「NOI2007」 货币兑换 链接 https://loj.ac/problem/2353 思路 题目不重要,重要的是最后一句话 提示 输入文件可能很大,请采用快速的读入方式. 必然 ...

  2. loj#2353. 「NOI2007」 货币兑换 斜率优化

    题意略 题解:可以列出dp方程\(dp[i]=max(dp[j]*{\frac{a[i]*c[j]+b[i]}{a[j]*c[j]+b[j]}}\),化简可以得到\(\frac{dp[i]}{b[i] ...

  3. 「译」JUnit 5 系列:条件测试

    原文地址:http://blog.codefx.org/libraries/junit-5-conditions/ 原文日期:08, May, 2016 译文首发:Linesh 的博客:「译」JUni ...

  4. 「译」JUnit 5 系列:扩展模型(Extension Model)

    原文地址:http://blog.codefx.org/design/architecture/junit-5-extension-model/ 原文日期:11, Apr, 2016 译文首发:Lin ...

  5. JavaScript OOP 之「创建对象」

    工厂模式 工厂模式是软件工程领域一种广为人知的设计模式,这种模式抽象了创建具体对象的过程.工厂模式虽然解决了创建多个相似对象的问题,但却没有解决对象识别的问题. function createPers ...

  6. 「C++」理解智能指针

    维基百科上面对于「智能指针」是这样描述的: 智能指针(英语:Smart pointer)是一种抽象的数据类型.在程序设计中,它通常是经由类型模板(class template)来实做,借由模板(tem ...

  7. 「JavaScript」四种跨域方式详解

    超详细并且带 Demo 的 JavaScript 跨域指南来了! 本文基于你了解 JavaScript 的同源策略,并且了解使用跨域跨域的理由. 1. JSONP 首先要介绍的跨域方法必然是 JSON ...

  8. 「2014-5-31」Z-Stack - Modification of Zigbee Device Object for better network access management

    写一份赏心悦目的工程文档,是很困难的事情.若想写得完善,不仅得用对工具(use the right tools),注重文笔,还得投入大把时间,真心是一件难度颇高的事情.但,若是真写好了,也是善莫大焉: ...

  9. 「2014-3-18」multi-pattern string match using aho-corasick

    我是擅(倾)长(向)把一篇文章写成杂文的.毕竟,写博客记录生活点滴,比不得发 paper,要求字斟句酌八股结构到位:风格偏杂文一点,也是没人拒稿的.这么说来,arxiv 就好比是 paper 世界的博 ...

随机推荐

  1. nuxt/eapress 安装报错Module build failed: ValidationError: PostCSS Loader Invalid OptionsModule build failed: ValidationError: PostCSS Loader Invalid Options options['useConfigFile'] is an invalid additi

    错误信息: Module build failed: ValidationError: PostCSS Loader Invalid Options options['useConfigFile'] ...

  2. LeetCode 647. 回文子串(Palindromic Substrings)

    647. 回文子串 647. Palindromic Substrings 题目描述 给定一个字符串,你的任务是计算这个字符串中有多少个回文子串. 具有不同开始位置或结束位置的子串,即使是由相同的字符 ...

  3. js实现之--防抖节流【理解+代码】

    防抖: 理解:在车站上车,人员上满了车才发走重点是人员上满触发一次. 场景:实时搜索,拖拽. 实现: //每一次都要清空定时器,重新设置上计时器值,使得计时器每一次都重新开始,直到最后满足条件并且等待 ...

  4. 在 EF 中只对 日期(不包括时间)进行比较的方法

    根据 EF 的版本不同有两种不同的实现方式: EF < 6.0 时使用 EntityFunctions.TruncateTime,EF >= 6.0 时使用 DbFunctions.Tru ...

  5. 手把手带你写一个minishell

    先解释一下Shell : Shell是一个功能为命令行解释器的应用程序,连接了用户和Linux内核,让我们能高效和安全地使用Linux内核. 要写一个minishell,我们要先理解它的过程: 读取输 ...

  6. deepin 删除navicat,重新开始计时

    1.执行 sudo apt-get autoremove navicat --purge 删除navicat 文件 2.cd /home/你的用户名 rm -rf .navicat64或rm -rf ...

  7. jQuery无缝轮播图思路详解-唯品会

    效果图如上: 需求:图片自动轮播,鼠标移上停止播放,离开恢复播放,箭头切换图片. html代码 <!--轮播图大盒子开始--> <div class="wrap" ...

  8. wait(),notify(),notifyAll()必须加锁的原因

    从语义方面解析为什么需要锁: 1.wait()方法会释放锁,如果没有先获得锁,那么如何释放? 从实际的作用: 为了预防饥饿线程的产生. 原因: // 线程A 的代码 while(!condition) ...

  9. [CF724G]Xor-matic Number of the Graph

    题目大意:有一张$n$个点$m$条边的无向图,定义三元组$(u,v,s)$是有趣的,当且仅当有一条$u\to v$的路径,路径上所有边的异或和为$s$.问所有有趣的三元组的$s$之和.$n\leqsl ...

  10. 从Harbor仓库拉起镜像,创建容器并更新shell脚本

    注意: 此shell脚本仅供基本使用,还有好多待完善的地方 大致流程 使用Jenkins从Gogs拉取仓库代码,根据选择的参数和输入的标签,确定要编译打包jar的模块,以及要制作的docker镜像信息 ...