SPOJ - BALNUM - Balanced Numbers(数位DP)
链接:
https://vjudge.net/problem/SPOJ-BALNUM
题意:
Balanced numbers have been used by mathematicians for centuries. A positive integer is considered a balanced number if:
Every even digit appears an odd number of times in its decimal representation
Every odd digit appears an even number of times in its decimal representation
For example, 77, 211, 6222 and 112334445555677 are balanced numbers while 351, 21, and 662 are not.
Given an interval [A, B], your task is to find the amount of balanced numbers in [A, B] where both A and B are included.
思路:
三进制记录每个值用的奇数次还是偶数次。
直接DP即可。
代码:
// #include<bits/stdc++.h>
#include<iostream>
#include<cstdio>
#include<vector>
#include<string.h>
#include<set>
#include<queue>
#include<algorithm>
#include<math.h>
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
const int MOD = 1e9+7;
const int MAXN = 1e6+10;
ULL a, b;
ULL F[21][60000];
int dig[21];
ULL m[11];
int Upd(int x, int p)
{
int sum = 0;
for (int i = 0;i < 10;i++)
{
int tmp = x%3;
x /= 3;
if (i == p)
sum += (tmp == 1 ? 2 : 1) * m[i];
else
sum += tmp * m[i];
}
return sum;
}
bool Check(int x)
{
int p = 0;
while(x)
{
if (x%3 == 2 && p%2 == 0)
return false;
if (x%3 == 1 && p%2 == 1)
return false;
x /= 3;
p++;
}
return true;
}
ULL Dfs(int pos, int sta, bool zer, bool lim)
{
if (pos == -1)
return Check(sta);
if (!lim && F[pos][sta] != -1)
return F[pos][sta];
int up = lim ? dig[pos] : 9;
ULL ans = 0;
for (int i = 0;i <= up;i++)
{
ans += Dfs(pos-1, (zer && i == 0) ? 0 : Upd(sta, i), zer && i == 0, lim && i == up);
}
if (!lim)
F[pos][sta] = ans;
return ans;
}
ULL Solve(ULL x)
{
int p = 0;
while(x)
{
dig[p++] = x%10;
x /= 10;
}
return Dfs(p-1, 0, 1, 1);
}
int main()
{
// freopen("test.in", "r", stdin);
m[0] = 1;
for (int i = 1;i < 11;i++)
m[i] = m[i-1]*3;
memset(F, -1, sizeof(F));
int t;
scanf("%d", &t);
while(t--)
{
scanf("%llu %llu", &a, &b);
printf("%llu\n", Solve(b)-Solve(a-1));
}
return 0;
}
SPOJ - BALNUM - Balanced Numbers(数位DP)的更多相关文章
- SPOJ BALNUM - Balanced Numbers - [数位DP][状态压缩]
题目链接:http://www.spoj.com/problems/BALNUM/en/ Time limit: 0.123s Source limit: 50000B Memory limit: 1 ...
- SPOJ10606 BALNUM - Balanced Numbers(数位DP+状压)
Balanced numbers have been used by mathematicians for centuries. A positive integer is considered a ...
- spoj 10606 Balanced Numbers 数位dp
题目链接 一个数称为平衡数, 满足他各个数位里面的数, 奇数出现偶数次, 偶数出现奇数次, 求一个范围内的平衡数个数. 用三进制压缩, 一个数没有出现用0表示, 出现奇数次用1表示, 出现偶数次用2表 ...
- SPOJ BALNUM Balanced Numbers (数位dp)
题目:http://www.spoj.com/problems/BALNUM/en/ 题意:找出区间[A, B]内所有奇数字出现次数为偶数,偶数字出现次数为计数的数的个数. 分析: 明显的数位dp题, ...
- SPOJ - BALNUM Balanced Numbers(数位dp+三进制状压)
Balanced Numbers Balanced numbers have been used by mathematicians for centuries. A positive integer ...
- spoj Balanced Numbers(数位dp)
一个数字是Balanced Numbers,当且仅当组成这个数字的数,奇数出现偶数次,偶数出现奇数次 一下子就相到了三进制状压,数组开小了,一直wa,都不报re, 使用记忆化搜索,dp[i][s] 表 ...
- Balanced Numbers (数位DP)
Balanced Numbers https://vjudge.net/contest/287810#problem/K Balanced numbers have been used by math ...
- SPOJ BALNUM Balanced Numbers(数位DP+状态压缩)题解
思路: 把0~9的状态用3进制表示,数据量3^10 代码: #include<cstdio> #include<map> #include<set> #includ ...
- SPOJ BALNUM Balanced Numbers 平衡数(数位DP,状压)
题意: 平衡树定义为“一个整数的某个数位若是奇数,则该奇数必定出现偶数次:偶数位则必须出现奇数次”,比如 222,数位为偶数2,共出现3次,是奇数次,所以合法.给一个区间[L,R],问有多少个平衡数? ...
随机推荐
- 面试官问你MySQL的优化,看这篇文章就够了
作者:zhangqh segmentfault.com/a/1190000012155267 一.EXPLAIN 做MySQL优化,我们要善用 EXPLAIN 查看SQL执行计划. 下面来个简单的示例 ...
- eclipse 无法启动,JAVA_HOME 失效
主要是因为JDK和eclipse 版本不兼容导致的,4位jdk配64位eclipse,32位jdk配32位eclipse; Java 设置JAVA_HOME无效 其根本原因是%JAVA_HOME%在p ...
- Window 使用Nginx 部署 Vue 并把nginx设为windows服务开机自动启动
1.编译打包Vue项目 在终端输入 npm run build 进行打包编译.等待... 打包完成生成dist文件夹,这就是打包完成的文件. 我们先放着,进行下一步. 2下载Nginx 下载地址: h ...
- Euraka适合初学者的简单小demo
1. 创建父工程:父工程的的打包形式该为pom,删除其余无关的文件 修改父工程的pom文件内容如下: <?xml version="1.0" encoding="U ...
- 解决internal/modules/cjs/loader.js:638 throw err; ^ Error: Cannot find module 'resolve'
internal/modules/cjs/loader.js:638 throw err; ^ Error: Cannot find module 'resolve' 根据提示可以知道有依赖没有安装完 ...
- vue watch 的简单使用
在项目开发中遇到的需求,这点写第一个dome 监听父组件传过来的值发送变化 在子组件中 <template> <div class="components"> ...
- python 数据类型 常用法方
python 数据类型 常用法方 upper() 大写 str lower() 小写 str strip() rstrip() lstrip() 去除字符两边的空格 去右边 左边空白 str repl ...
- Android数据存储原理分析
Android上常见的数据存储方式为: SharedPreferences是 Android 中比较常用的存储方法,本篇将从源码角度带大家分析一下Android中常用的轻量级数据存储工具SharedP ...
- oracle in和exists区别
in和exists http://oraclemine.com/sql-exists-vs-in/ https://www.techonthenet.com/oracle/exists.php htt ...
- SetCurrentCellAddressCore 函数的可重入调用
绑定数据在线程中 private void dataGridView1_CellEndEdit(object sender, DataGridViewCellEventArgs e) { if (Di ...