【loj3123】【CTS2019】重复
题目
给出一个长度为\(n\)的串\(s\),询问有多少个长度为\(m\)的串\(t\)
满足 \(t\) 的无限循环串存在一个长度为\(n\)且比\(s\)字典序严格小的子串
$ n , m \le 2000 $
题解
自从CTS打铁之后就非常自闭,智商一天不如一天,所以感觉这题异常抽象。。。
我看的这位神仙的题解
Part 1
考虑统计任意字串都大于等于的数量然后减去,首先对 $ s $ 建立 $ kmp $ 自动机
由于题目中的限制,结点 $ i $ 的出边不能比 $ i+1,nxt[i]+1,nxt[nxt[i]]+1,\cdots $ 位字符(\(fail\)链上的后一位)小
只要能在这样的自动机上走无限多次 \(t\) ,那么串 \(t\) 就是合法的
考虑状态\((i,j)\)表示自动机在结点\(i\)时,构造到了 \(t\) 的对应第\(j\)位
不同\((i,j)\)的数量也是有限的,那么一旦第二次到某个 $ (i,j) $ 的时候就出现了循环节
考虑循环节的长度为\(l\) ,显然有 \(l\) 要么是\(|s|\) 的倍数(1),要么是\(|s|\)的因数(2)
到达\((i,j)\)的最后一次一定是失配的,否则可以把循环节的起点向前移动
从 \(i\) 开头的是 \(t\) 的一个循环位移 \(t'\) , 现在如果是情况(1),设循环节为\(kt’(k>1)\),说明\(s_{1,i} + kt'\)有一个更小的循环节\(t’\),那么显然有一个更小的循环节长度为 \(|t'|\)
所以在有限步会走到一个环,且\(l\)满足(2),那就在环里不出来了=O^O=
所以一个串一定可以映射到一个环
Part 2
进一步考虑题目中的限制,相当于只有最小的那条边可能连向某个非0位置,其它的边一定连向0
记这两种边为实边和虚边,如果\(i\)的实边不连向\(i+1\),那么 \(i+1\) 到 \(n\) 就都不连通,没用了
所以自动机类似这样一个\(\rho\)形
Part 3
分开计数,考虑单独末尾的环
如果长度为\(m\)的因数那么就可以贡献长度个不同的串,否则不贡献答案
考虑经过0的环
最后的环一定是所有环在0的组合
一种顺序的环贡献就是最后一个环的长度,可以枚举一个最后一个环上的点
\(f_{i,j}\)表示从 \(0\) 走 \(i\) 步到 \(j\) 的方案,\(g_{i,j}\) 表示从 \(j\) 经 \(i\) 步沿黑边跳回 \(0\) 的方案
所以 \(ans \ = \ \sum _{i=0}^{m} \sum_{j=0}^{n} f_{i,j} \times g_{m-i,j}\)
暂时不会$n\ log n $的多项式解法
#include<bits/stdc++.h>
#define ll long long
#define mod 998244353
using namespace std;
const int N=2010;
int n,m,nxt[N],to[N],mx[N],f[N][N],g[N][N],len,pw=1;
char s[N];
void inc(int&x,int y){x+=y;if(x>=mod)x-=mod;}
int main(){
// freopen("repeat.in","r",stdin);
// freopen("repeat.out","w",stdout);
scanf("%d%s",&m,s+1);n=strlen(s+1);
for(int i=1;i<=m;++i)pw=(ll)pw*26%mod;
for(int i=2,j=0;i<=n;nxt[i++]=j){
while(j&&s[i]!=s[j+1])j=nxt[j];
if(s[i]==s[j+1])++j;
}
for(int i=0;i<=n;++i){
int k=i==n?nxt[i]:i;
mx[i]=s[to[i]=k+1]-'a';
while(k){
k=nxt[k];
if(mx[i]<s[k+1]-'a')mx[i]=s[to[i]=k+1]-'a';
}
if(to[i]!=i+1)len=i-to[n=i]+1;
}
f[0][0]=1;
for(int i=1;i<=m;++i)
for(int j=0;j<=n;++j){
inc(f[i][to[j]],f[i-1][j]);
inc(f[i][0],(ll)(25-mx[j])*f[i-1][j]%mod);
}
for(int i=0;i<=n;++i)g[1][i]=25-mx[i];
for(int i=2;i<=m;++i)
for(int j=0;j<=n;++j)g[i][j]=g[i-1][to[j]];
int ans=!(m%len)?len:0;
for(int i=0;i<=m;++i)
for(int j=0;j<=n;++j)inc(ans,(ll)f[i][j]*g[m-i][j]%mod);
cout<<(pw-ans+mod)%mod<<endl;
return 0;
}
【loj3123】【CTS2019】重复的更多相关文章
- LOJ3123 CTS2019 重复 KMP自动机、DP、多项式求逆
传送门 CTS的计数题更完辣(撒花 Orz zx2003,下面的内容在上面的博客基础上进行一定的补充. 考虑计算无限循环之后不存在子串比\(s\)字典序小的串的个数.先对串\(s\)建立KMP自动机, ...
- [LOJ3123] CTSC2019重复
Description 给定一个⻓为 n 的字符串 s , 问有多少个⻓为 m 的字符串 t 满足: 将 t 无限重复后,可以从中截出一个⻓度为 n 且字典序比 s 小的串. m ≤ 2000 n ≤ ...
- 【LOJ】#3123. 「CTS2019 | CTSC2019」重复
LOJ3123 60pts 正难则反,熟练转成总方案数减掉每个片段都大于等于s的字典序的方案 按照一般的套路建出kmp上每个点加一个字符的转移边的图(注意这个图开始字母必须是nxt链中下一个相邻的字符 ...
- 【题解】CTS2019珍珠(二项式反演+卷积)
[题解]CTS2019珍珠 题目就是要满足这样一个条件\(c_i\)代表出现次数 \[ \sum {[\dfrac {c_i } 2]} \ge 2m \] 显然\(\sum c_i=n\)所以,而且 ...
- 题解-CTS2019 珍珠
题面 CTS2019 珍珠 有 \(n\) 个在 \([1,d]\) 内的整数,求使可以拿出 \(2m\) 个整数凑成 \(m\) 个相等的整数对的方案数. 数据范围:\(0\le m\le 10^9 ...
- 避免重复造轮子的UI自动化测试框架开发
一懒起来就好久没更新文章了,其实懒也还是因为忙,今年上半年的加班赶上了去年一年的加班,加班不息啊,好了吐槽完就写写一直打算继续的自动化开发 目前各种UI测试框架层出不穷,但是万变不离其宗,驱动PC浏览 ...
- 【SQLServer】记一次数据迁移-标识重复的简单处理
汇总篇:http://www.cnblogs.com/dunitian/p/4822808.html#tsql 今天在数据迁移的时候因为手贱遇到一个坑爹问题,发来大家乐乐,也传授新手点经验 迁移惯用就 ...
- 12、Struts2表单重复提交
什么是表单重复提交 表单的重复提交: 若刷新表单页面, 再提交表单不算重复提交. 在不刷新表单页面的前提下: 多次点击提交按钮 已经提交成功, 按 "回退" 之后, 再点击 &qu ...
- 关于Android避免按钮重复点击事件
最近测试人员测试我们的APP的时候,喜欢快速点击某个按钮,出现一个页面出现多次,测试人员能不能禁止这样.我自己点击了几下,确实存在这个问题,也感觉用户体验不太好.于是乎后来我搜了下加一个方法放在我们U ...
随机推荐
- @SuppressWarnings注解用法
@SuppressWarnings注解主要用在取消一些编译器产生的警告对代码左侧行列的遮挡,有时候这会挡住我们断点调试时打的断点. 如图所示: 这时候我们在方法上加上@SuppressWarnings ...
- java注解注意点
注意:以后工作中代码中 不允许出现警告 自定义注解 1:自定义注解并没有发挥它的作用,而Eclipse自带的注解通过反射另外有一套代码,可以发挥它的作用,例如:跟踪代码...... 2:如果自定义的代 ...
- IDEA中调试时F8,F7快捷键失效
idea中调试时F8,F7快捷键失效 原因:相关软件的快捷键占用了F8,F7,如我的有道词典占用F8了这个快捷键,导致idea调试时不能使用F8,改变有道词典的快捷键即可.
- Telnet入侵WindowsXP
上一章,采用图形界面配置.这一节,采用命令方式配置 //修复.bat(掩饰名字) @ echo off //关闭回显 regedit.exe /s start.reg ///s 不打印 net sta ...
- java读取配置文件属性
在项目开发过程中,有时需要将其中用到的变量值在一个文件中统一管理,首先我选到了config.properties文件:下面这个代码是用于读取其中的变量值的类: package com.modem.te ...
- sql 查询某个字段最长的记录
sql 查询文本字段中值的长度最长的记录 一.函数1.SQL ServerLEN() 函数返回文本字段中值的长度.SELECT LEN(column_name) FROM table_name;2. ...
- 【RocketMQ】同一个项目中,同一个topic,可以存在多个消费者么?
一.问题答案 是不可以的 而且后注册的会替换前注册的,MqConsumer2会替换MqConsumer,并且只结束tag-2的消息 /** * @date 2019/05/28 */ @Compone ...
- Python的正则表达式re模块
Python的正则表达式(re模块) 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. Python使用re模块提供了正则表达式处理的能力.如果对正则表达式忘记的一干二净的话,可以花费 ...
- python+BeautifulSoup+多进程爬取糗事百科图片
用到的库: import requests import os from bs4 import BeautifulSoup import time from multiprocessing impor ...
- Python - 2和3的区别
编码: Python2的默认编码是ASCII码,这是导致Python2中经常遇到编码问题的主要原因之一,至于原因,在于Python这门语言出现的时候,还没有Unicode! Python3默认编码是U ...