【洛谷P3369】普通平衡树——Splay学习笔记(一)
二叉搜索树(二叉排序树)
概念:一棵树,若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值; 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值; 它的左、右子树也分别为二叉搜索树(baidu百科)。
就是一棵二叉树,所有的节点都满足:左子树内每个的点的值比当前点值小,右子树内每个的点的值比当前点值大
如下图
我们只需在树上中序遍历就会得到一个上升的权值序列
我们可以在二叉搜索树上干很多事情,比如插入某个值,查询第k大值,查询某个数的排名等,显然单次操作最坏复杂度为树的深度,如果树呈链状,它的复杂度就会爆炸
这时我们就要想办法保证二叉树的深度不会很大,最好是\(log\)级别的
平衡树
概念:一棵树,它是一棵空树或它的左右两个子树的高度差的绝对值不超过\(1\),并且左右两个子树都是一棵平衡二叉树(baidu百科)
不用管上面在BB啥,大概就是一棵深度为\(log\)(节点数)的二叉搜索树
平衡树有很多维护方式,这里介绍的是\(Splay\)
\(Splay\)
变量
维护一棵Splay,最基础的变量有:
root //根的编号
ch[N][2] //每个结点的两个儿子
f[N] //每个结点的父亲
cnt[N] //相同权值的点会被插入到同一个结点上,这里维护当前权值的结点上的点的个数
val[N] //每个结点的权值
size[N] //每个子树的大小
题目保证权值不同时 cnt数组就没有用了
有时候 val、size数组也不需要开
旋转
\(Splay\) 最核心的操作就是旋转
旋转就是把一个点搞到它父亲的位置,同时要保持二叉搜索树的性质,如下图
代码:
inline int get_w(int x){ //判断是x是f[x]的左儿子还是右儿子
return ch[f[x]][1]==x; //左儿子return 0,右儿子return 1
}
inline void push_up(int x){ //维护size
if(x) size[x]=size[ch[x][0]]+size[ch[x][1]]+cnt[x];
}
inline void rotate(int x){
int fa=f[x],gfa=f[f[x]],w=get_w(x);
ch[fa][w]=ch[x][w^1]; f[ch[fa][w]]=fa; //fa 与 x的儿子 的关系
ch[x][w^1]=fa; f[fa]=x; //fa 与 x 的关系
f[x]=gfa; if(gfa) ch[gfa][ch[gfa][1]==fa]=x; //x 与gfa的关系
push_up(fa); push_up(x); //fa在x的下面,先push_up(fa)
}
\(splay\) 操作
即不断地旋转一个结点,把它转到根,以方便对它操作
如下图
虽然它的深度没有变化我们成功把x搞到了根的位置
但是如果是一个这种形状:
它就会非常丑
如果在\(x\)、\(fa\)、\(gfa\)在一条线上时,旋转\(fa\)就比较好看了
然而这里\(x\)转到根上最后深度还是会变大。。这个例子不是很好。。表在意这些细节
总之这么写就对了
inline void Splay(int x){
for(int fa;fa=f[x];rotate(x))
if(f[fa]) rotate(get_w(x)==get_w(fa)?fa:x);
root=x;
}
剩下的操作就比较好理解了
\(insert\)
插入一个点,如果\(Splay\)中有相同权值的结点,最就会在这个结点上\(cnt+1\);
如果没有相同权值的结点,就会插入到一个叶子结点上
具体看代码:
void insert(int x){
if(!root){ //Splay为空,直接设为根
val[root=++Size]=x;
size[Size]=cnt[Size]=1;
return;
}
int now=root,fa=0;
while(1){
if(val[now]==x){ //权值相同,直接++cnt[now]
++cnt[now]; push_up(now);
push_up(fa); Splay(now); //最后把now splay到根是因为插入x后,从根到now的路径上的结点size都需要更新
return;
}
fa=now;now=ch[now][x>val[now]]; //根据权值判断向左儿子/右儿子走
if(!now){ //到达叶子结点
f[++Size]=fa;val[Size]=x;
size[Size]=cnt[Size]=1;
ch[fa][val[fa]<x]=Size;
push_up(fa);Splay(Size); //Splay(Size) 和上面一样
return;
}
}
}
\(find\_num\)
查找\(Splay\)中\(rank=x\)的\(num\)
int find_num(int x){
if(!root) return 0;
int now=root;
while(1){
if(x<=size[ch[now][0]]) now=ch[now][0]; //左子树的大小等于x或者比x大,那么rank为x的数一定在左子树中
else{
int temp=size[ch[now][0]]+cnt[now];
if(x<=temp) return val[now]; //左子树的size+cnt[now]>=x,rank为x的点在now上
x-=temp; now=ch[now][1]; //rank为x的点在右子树中,在右子树中rank为x-temp
}
}
}
\(find\_rank\)
查找\(Splay\)中\(val=x\)的点的\(rank\)
int find_rank(int x){
if(!root) return 0;
int now=root,ans=0;
while(1){
if(x<val[now]) now=ch[now][0]; //val=x的点在左子树中
else{
ans+=size[ch[now][0]]; //不在左子树中,比左子树的所有结点权值都大,rank加上左子树的大小
if(x==val[now]){
Splay(now); return ans+1; //now的权值就是x,返回rank,Splay(now)是为了方便下面的del操作
}
ans+=cnt[now],now=ch[now][1]; //往右子树找
}
}
}
\(find\_pre/suf\)
查找\(root\)的前驱结点
显然\(root\)的前驱结点就是\(root\)的左子树中权值最大的点
后缀结点同理
inline int find_pre(){
int now=ch[root][0];
while(ch[now][1]) now=ch[now][1];
return now;
}
inline int find_suf(){
int now=ch[root][1];
while(ch[now][0]) now=ch[now][0];
return now;
}
\(del\)
删除一个权值为\(x\)的点
流程:
先把权值为\(x\)的点\(splay\)到\(root\),方便操作
若\(cnt>1\),直接\(--cnt\)
否则
若左儿子为空,直接把右儿子当做根即可
若右儿子为空,同理
否则
找到\(root\)的前驱,\(splay\)到根,
原先的\(root\)一定成了新\(root\)的右儿子,且原\(root\)没有左儿子
新\(root\)、原\(root\)、原\(root\)的右儿子构成一条链的结构,用类似于链表删除操作即可删除原\(root\)
void del(int x){
find_rank(x); //找到权值为x的点并把它旋转到root
if(cnt[root]>1){
cnt[root]--; push_up(root);
return;
}
if(!ch[root][0]*ch[root][1]){
root=ch[root][0]+ch[root][1];
f[root]=0; return;
}
Splay(find_pre());
ch[root][1]=ch[ch[root][1]][1]; //删除原root
f[ch[root][1]]=root;push_up(root);
}
完整代码
#include<iostream>
#include<cstdio>
using namespace std;
const int MAXN=100010;
inline int read(){
int x=0,f=1; char c=getchar();
while(c<'0'){if(c=='-')f=-1;c=getchar();}
while(c>='0')x=(x<<3)+(x<<1)+c-'0',c=getchar();
return x*f;
}
int n,root,Size;
int ch[MAXN][2],f[MAXN],size[MAXN],cnt[MAXN],val[MAXN];
inline int get_w(int x){
return ch[f[x]][1]==x;
}
inline void push_up(int x){
if(x) size[x]=size[ch[x][0]]+size[ch[x][1]]+cnt[x];
}
inline void rotate(int x){
int fa=f[x],gfa=f[f[x]],w=get_w(x);
ch[fa][w]=ch[x][w^1]; f[ch[fa][w]]=fa;
f[fa]=x; ch[x][w^1]=fa; f[x]=gfa;
if(gfa) ch[gfa][ch[gfa][1]==fa]=x;
push_up(x); push_up(fa);
}
inline void Splay(int x){
for(int fa;fa=f[x];rotate(x))
if(f[fa]) rotate(get_w(x)==get_w(fa)?fa:x);
root=x;
}
void insert(int x){
if(!root){
val[root=++Size]=x;
size[Size]=cnt[Size]=1;
return;
}
int now=root,fa=0;
while(1){
if(val[now]==x){
++cnt[now]; push_up(now);
push_up(fa); Splay(now);
return;
}
fa=now;now=ch[now][x>val[now]];
if(!now){
f[++Size]=fa;val[Size]=x;
size[Size]=cnt[Size]=1;
ch[fa][val[fa]<x]=Size;
push_up(fa);Splay(Size);
return;
}
}
}
int find_num(int x){
if(!root) return 0;
int now=root;
while(1){
if(x<=size[ch[now][0]]) now=ch[now][0];
else{
int temp=size[ch[now][0]]+cnt[now];
if(x<=temp) return val[now];
x-=temp; now=ch[now][1];
}
}
}
int find_rank(int x){
if(!root) return 0;
int now=root,ans=0;
while(1){
if(x<val[now]) now=ch[now][0];
else{
ans+=size[ch[now][0]];
if(x==val[now]){
Splay(now); return ans+1;
}
ans+=cnt[now],now=ch[now][1];
}
}
}
inline int find_pre(){
int now=ch[root][0];
while(ch[now][1]) now=ch[now][1];
return now;
}
inline int find_suf(){
int now=ch[root][1];
while(ch[now][0]) now=ch[now][0];
return now;
}
void del(int x){
find_rank(x);
if(cnt[root]>1){
cnt[root]--; push_up(root);
return;
}
if(!ch[root][0]*ch[root][1]){
root=ch[root][0]+ch[root][1];
f[root]=0; return;
}
Splay(find_pre());
ch[root][1]=ch[ch[root][1]][1];
f[ch[root][1]]=root;push_up(root);
}
int main()
{
n=read();
int opt,x;
while(n--){
opt=read(); x=read();
switch(opt){
case 1: insert(x); break;
case 2: del(x); break;
case 3: printf("%d\n",find_rank(x)); break;
case 4: printf("%d\n",find_num(x)); break;
case 5: insert(x);printf("%d\n",val[find_pre()]);del(x); break;
case 6: insert(x);printf("%d\n",val[find_suf()]);del(x); break;
}
}
return 0;
}
【洛谷P3369】普通平衡树——Splay学习笔记(一)的更多相关文章
- [洛谷P3391] 文艺平衡树 (Splay模板)
初识splay 学splay有一段时间了,一直没写...... 本题是splay模板题,维护一个1~n的序列,支持区间翻转(比如1 2 3 4 5 6变成1 2 3 6 5 4),最后输出结果序列. ...
- BZOJ3224/洛谷P3391 - 普通平衡树(Splay)
BZOJ链接 洛谷链接 题意简述 模板题啦~ 代码 //普通平衡树(Splay) #include <cstdio> int const N=1e5+10; int rt,ndCnt; i ...
- 洛谷P3369普通平衡树(Treap)
题目传送门 转载自https://www.cnblogs.com/fengzhiyuan/articles/7994428.html,转载请注明出处 Treap 简介 Treap 是一种二叉查找树.它 ...
- 平衡树splay学习笔记#2
讲一下另外的所有操作(指的是普通平衡树中的其他操作) 前一篇的学习笔记连接:[传送门],结尾会带上完整的代码. 操作1,pushup操作 之前学习过线段树,都知道子节点的信息需要更新到父亲节点上. 因 ...
- 【洛谷P3391】文艺平衡树——Splay学习笔记(二)
题目链接 Splay基础操作 \(Splay\)上的区间翻转 首先,这里的\(Splay\)维护的是一个序列的顺序,每个结点即为序列中的一个数,序列的顺序即为\(Splay\)的中序遍历 那么如何实现 ...
- [洛谷P3369] 普通平衡树 Treap & Splay
这个就是存一下板子...... 题目传送门 Treap的实现应该是比较正经的. 插入删除前驱后继排名什么的都是平衡树的基本操作. #include<cstdio> #include< ...
- 文艺平衡树 Splay 学习笔记(1)
(这里是Splay基础操作,reserve什么的会在下一篇里面讲) 好久之前就说要学Splay了,结果苟到现在才学习. 可能是最近良心发现自己实在太弱了,听数学又听不懂只好多学点不要脑子的数据结构. ...
- 平衡树splay学习笔记#1
这一篇博客只讲splay的前一部分的操作(rotate和splay),后面的一段博客咕咕一段时间 后一半的博客地址:[传送门] 前言骚话 为了学lct我也是拼了,看了十几篇博客,学了将近有一周,才A掉 ...
- 洛谷P3369 普通平衡树
刚学平衡树,分别用了Splay和fhq-treap交了一遍. 这是Splay的板子,貌似比较短? Splay #include <iostream> #include <cstdio ...
随机推荐
- java之spring之spring整合hibernate
这篇讲下spring和hibernate的整合 目录结构如下: 1.新建java项目 2.导入jar包 antlr-2.7.7.jar aopalliance.jar aspectjweaver.ja ...
- ASP.Net Jquery 随机验证码 文本框判断
// 登陆验证 $(function () { var chars = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'a', 'B' ...
- Java 之 Response 文件下载案例
文件下载需求: 1. 页面显示超链接 2. 点击超链接后弹出下载提示框 3. 完成图片文件下载 分析过程: 1. 超链接指向的资源如果能够被浏览器解析,则在浏览器中展示,如果不能解析,则弹出下载提示框 ...
- ECharts大屏可视化【词云,堆积柱状图,折线图,南丁格尔玫瑰图】
一.简介 参考ECharts快速入门:https://www.cnblogs.com/yszd/p/11166048.html 二.代码实现 <!DOCTYPE html> <htm ...
- JVM中的类加载
JVM中的类加载 关于JVM中类的加载这部分知识在网上有太多的文章描述这部分的知识.但是多数文章都过于冗长,难以理解.这篇文章主要是一些我对JVM中类的加载的理解. 一.一句话概括 java在类加载的 ...
- 小米8seroot后更改hosts文件记录
1.先备份原有文件,在设置中有个备份与恢复,可以备份,备份后链接电脑,传电脑上 2.下载开发版miui,安装 3.解bl锁,先到官网申请,按照提示操作. 4.备份文件传到手机,恢复文件 5.获得roo ...
- idea中新增package总是嵌套的解决方法
在idea中创建package,为了方便会将com.xx.xx作为一个package,下面添加对应的子package.比如service,config等.但是当我创建是总是会嵌套在下面变成了com.x ...
- Gerrit代码评审流程
Gerrit代码评审流程 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.代码评审流程(如下图所示) 第一步:贡献者报建一个提交,并通过之前从gerrit下载的commit-ms ...
- Guava Cache 工具类
maven依赖 <dependency> <groupId>com.google.guava</groupId> <artifactId>guava&l ...
- Environment类在代码中的使用
string environmentVariable = Environment.GetEnvironmentVariable("TrustMerchantIniFile"); 可 ...