题目背景

在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板。这是一张有8个大小相同的格子的魔板:

1 2 3 4

8 7 6 5

题目描述

我们知道魔板的每一个方格都有一种颜色。这8种颜色用前8个正整数来表示。可以用颜色的序列来表示一种魔板状态,规定从魔板的左上角开始,沿顺时针方向依次取出整数,构成一个颜色序列。对于上图的魔板状态,我们用序列(1,2,3,4,5,6,7,8)来表示。这是基本状态。

这里提供三种基本操作,分别用大写字母“A”,“B”,“C”来表示(可以通过这些操作改变魔板的状态):

“A”:交换上下两行;

“B”:将最右边的一列插入最左边;

“C”:魔板中央四格作顺时针旋转。

下面是对基本状态进行操作的示范:

A: 8 7 6 5

1 2 3 4

B: 4 1 2 3

5 8 7 6

C: 1 7 2 4

8 6 3 5

对于每种可能的状态,这三种基本操作都可以使用。

你要编程计算用最少的基本操作完成基本状态到目标状态的转换,输出基本操作序列。

输入格式

只有一行,包括8个整数,用空格分开(这些整数在范围 1——8 之间)不换行,表示目标状态。

输出格式

Line 1: 包括一个整数,表示最短操作序列的长度。

Line 2: 在字典序中最早出现的操作序列,用字符串表示,除最后一行外,每行输出60个字符。

输入输出样例

输入 #1复制

2 6 8 4 5 7 3 1 
输出 #1复制

7
BCABCCB

说明/提示

题目翻译来自NOCOW。

USACO Training Section 3.2

解析:-----BFS宽搜-----

对于状态采用了字符串的存储是采用了将八个数字压成一个字符串的方式
例如初始状态为"12345678",而字符串存储为"12348765" 。
然后根据三个变换规则ABC进行变换
直到变成了目标状态
注意目标状态也要第二部分翻转
例如"26845731",存储为"26841375"。

 #include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<string>
#include<algorithm>
#include<iomanip>
#include<cstdlib>
#include<queue>
#include<set>
#include<map>
#include<stack>
#include<vector>
#define LL long long
#define re register
#define Max 100001
struct MoBan {
std::string p;
std::string str;
int step;
};
std::queue<MoBan>q;
std::string D;
int ans;
std::map<std::string,int>m;
std::string BFS()
{
MoBan now,net;
while(!q.empty()) {
now=q.front();q.pop();
std::string str=now.str;
int t=now.step;
std::string p=now.p;
if(str==D) {
ans=t;
return p;
break;
}
++t;
//A
std::string d="";
for(re int i = ; i <= ; ++ i) d+=str[i];
for(re int i = ; i <= ; ++ i) d+=str[i];
net.str=d;net.p=p+"A";
net.step=t;
if(m[d]!=) q.push(net),m[d]=;
//B
std::string a="";
a+=str[];
for(re int i = ; i < ; ++ i) a+=str[i];
a+=str[];
for(re int i = ; i < ; ++ i) a+=str[i];
net.str=a;net.p=p+"B";
if(m[a]!=) q.push(net),m[a]=;
//C
std::string c="";
c+=str[],c+=str[],c+=str[],c+=str[],c+=str[],c+=str[],c+=str[],c+=str[];
net.str=c;net.p=p+"C";
if(m[c]!=) q.push(net),m[c]=;
}
}
int main()
{
char ch[];std::string str="";
for(re int i = ; i <= ; ++ i) std::cin >> ch[i];
for(re int i = ; i <= ; ++ i) D+=ch[i];
for(re int i = ; i >= ; -- i) D+=ch[i];
MoBan now;m[str]=;
now.p="";now.step=;now.str=str;q.push(now);std::string p=BFS();
printf("%d\n",ans);
int len=p.length();std::cout << p[];
for(re int i = ; i < len ; ++ i) {
std::cout << p[i];
if(i%==) std::cout << '\n';
}
return ;
}

AC代码

洛谷P2730 [IOI]魔板 Magic Squares的更多相关文章

  1. 题解【洛谷P2730】魔板 Magic Squares

    题面 首先我们可以发现,在每一次 BFS 时按照 \(A→B→C\) 的顺序枚举遍历肯定是字典序最小的. 然后就是普通的 BFS 了. 我们考虑使用 \(\text{STL map}\) 来存储起点状 ...

  2. 【简●解】 LG P2730 【魔板 Magic Squares】

    LG P2730 [魔板 Magic Squares] [题目背景] 在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 ...

  3. 哈希+Bfs【P2730】 魔板 Magic Squares

    没看过题的童鞋请去看一下题-->P2730 魔板 Magic Squares 不了解康托展开的请来这里-->我这里 至于这题为什么可以用康托展开?(瞎说时间到. 因为只有8个数字,且只有1 ...

  4. 洛谷 P2730 魔板 Magic Squares 解题报告

    P2730 魔板 Magic Squares 题目背景 在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 5 题目描述 ...

  5. [洛谷P2730] 魔板 Magic Squares

    洛谷题目链接:魔板 题目背景 在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 5 题目描述 我们知道魔板的每一个方格都 ...

  6. 洛谷 P2730 魔板 Magic Squares

    P2730 魔板 Magic Squares 题目背景 在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 5 题目描述 ...

  7. [USACO3.2]魔板 Magic Squares

    松下问童子,言师采药去. 只在此山中,云深不知处.--贾岛 题目:魔板 Magic Squares 网址:https://www.luogu.com.cn/problem/P2730 这是一张有8个大 ...

  8. 「一本通 1.4 例 2」[USACO3.2]魔板 Magic Squares

    [USACO3.2]魔板 Magic Squares 题目背景 在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 5 题 ...

  9. P2730 魔板 Magic Squares

    题目背景 在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 5 题目描述 我们知道魔板的每一个方格都有一种颜色.这8种颜 ...

随机推荐

  1. Java 函数式编程和Lambda表达式

    1.Java 8最重要的新特性 Lambda表达式.接口改进(默认方法)和批数据处理. 2.函数式编程 本质上来说,编程关注两个维度:数据和数据上的操作. 面向对象的编程泛型强调让操作围绕数据,这样可 ...

  2. Spring中的ApplicationListener的使用详解案例

    本文链接:https://blog.csdn.net/u010963948/article/details/83507185 1.ApplicationContext Spring的核心,Contex ...

  3. Spring-Cloud之Eureka注册与发现-2

    一.Eureka是Netflix开发的服务发现框架,本身是一个基于REST的服务,主要用于定位运行在AWS域中的中间层服务,以达到负载均衡和中间层服务故障转移的目的.SpringCloud将它集成在其 ...

  4. 深入了解Cookie和Session

    会话(Session)跟踪是Web程序中常用的技术,用来跟踪用户的整个会话.常用的会话跟踪技术是Cookie与Session.Cookie通过在客户端记录信息确定用户身份,Session通过在服务器端 ...

  5. 京信通信成功打造自动化工厂(MES应用案例)

    企业介绍: 京信通信成立于1997年,是一家集研发.生产.销售及服务于一体的移动通信外围设备专业厂商,致力于为客户提供无线覆盖和传输的整体解决方案,于2003年在香港联交所主板上市(2342.HK), ...

  6. 前端构建工具 Gulp 压缩合并JS/CSS 并添加版本号、ES6转ES5

    Gulp 基于 Node.js 的前端构建工具,可以实现前端代码的编译(sass.less).压缩合并(JS.CSS).测试:图片的压缩:已经添加 JS 和 CSS 版本号,防止浏览器缓存. 1. 安 ...

  7. PHP使用Redis的Pub/Sub(发布订阅)命令

    1.概念 名称 含义 channel 频道:生产者和消费者直接操作的对象 publish 生产者:向channel发送消息 subscribe 消费者:订阅一个或多个channel psubscrib ...

  8. nginx使用过程中遇到的问题及基本使用总结

    问题: 1.出现这个问题nginx: [error] open() "/run/nginx.pid" failed (2: No such file or directory) 解 ...

  9. golang的channel实现

    golang的channel实现位于src/runtime/chan.go文件.golang中的channel对应的结构是: // Invariants: // At least one of c.s ...

  10. 你真的会使用 VMware Workstation 吗

    你真的会使用VMware Workstation吗?网上有很多教程,虽然都还可以,但总感觉差强人意.所以笔者在这里分享自己的使用心得,让大家参考一下,个人认为是最好的了. 简介 VMware Work ...