题目描述:

Malek Dance Club

time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

As a tradition, every year before IOI all the members of Natalia Fan Club are invited to Malek Dance Club to have a fun night together. Malek Dance Club has 2n members and coincidentally Natalia Fan Club also has 2n members. Each member of MDC is assigned a unique id i from 0 to 2n - 1. The same holds for each member of NFC.

One of the parts of this tradition is one by one dance, where each member of MDC dances with a member of NFC. A dance pair is a pair of numbers (a, b) such that member a from MDC dances with member b from NFC.

The complexity of a pairs' assignment is the number of pairs of dancing pairs (a, b) and (c, d) such that a < c and b > d.

You are given a binary number of length n named x. We know that member i from MDC dances with member from NFC. Your task is to calculate the complexity of this assignment modulo 1000000007 (109 + 7).

Expression denotes applying «XOR» to numbers x and y. This operation exists in all modern programming languages, for example, in C++ and Java it denotes as «^», in Pascal — «xor».

Input

The first line of input contains a binary number x of lenght n, (1 ≤ n ≤ 100).

This number may contain leading zeros.

Output

Print the complexity of the given dance assignent modulo 1000000007 (109 + 7).

Examples

Input

Copy

11

Output

Copy

6

Input

Copy

01

Output

Copy

2

Input

Copy

1

Output

Copy

1

思路:

题目意思是给一个长度为n的01字符串x,然后将0到n-1的数与x做亦或,映射到另一组数,求这个形成的键值对的复杂度,根据复杂度定义,我们知道(a,b)与(c,d),当a<c&&b>d时算一个复杂度,由于我们是从小到大枚举键的,满足复杂度的第一个条件,只要再满足值是逆序的就可以了,题目就转换成了求有多少个逆序对。

我们可以来找一下规律:

n=3时,有

x=000

000=>000

001=>001

...

111=>111,值的逆序对为0,所以复杂度为零

x=001

000=>011

001=>000

010=>011

011=>010

...

111=>110,值的逆序对有4个,所以复杂度是四

以此类推,最终得到:\(a_0=0,a_1=4,a_2=8,...,a_7=28\),即\(a_x=4x\).

同理,n=2时有\(a_x=2x\).最后有:\(a_x=2^{n-1}x\).

由于是大数,需要用到快速幂和及时取余。

代码:

#include <iostream>
#include <string>
#define m 1000000007
using namespace std;
int n;
string s;
long long convert(string s)
{
long long ans = 0;
long long weight = 1;
for(int i = s.size()-1;i>=0;i--)
{
if(s[i]=='1')
{
ans = (ans+weight)%m;
}
weight = (weight%m*2)%m;
}
return ans;
}
long long q_mod(long long a,long long b,long long mod)
{
long long sum = 1;
while(b)
{
if(b&1)
{
sum = (sum%mod*a%mod)%mod;
}
a = (a%mod*a%mod)%mod;
b >>= 1;
}
return sum;
}
int main()
{
//cout << q_mod(2,3,m) << endl;
cin >> s;
n = s.size();
long long ans = convert(s);
ans = (ans%m*q_mod(2,n-1,m))%m;
cout << ans << endl;
}

Codeforces H. Malek Dance Club(找规律)的更多相关文章

  1. Malek Dance Club(递推)

    Malek Dance Club time limit per test 1 second memory limit per test 256 megabytes input standard inp ...

  2. codeforces B. A and B 找规律

    Educational Codeforces Round 78 (Rated for Div. 2) 1278B - 6 B. A and B  time limit per test 1 secon ...

  3. Codeforces 870C Maximum splitting (贪心+找规律)

    <题目链接> 题目大意: 给定数字n,让你将其分成合数相加的形式,问你最多能够将其分成几个合数相加. 解题分析: 因为要将其分成合数相加的个数最多,所以自然是尽可能地将其分成尽可能小的合数 ...

  4. Codeforces Gym 100015B Ball Painting 找规律

    Ball Painting 题目连接: http://codeforces.com/gym/100015/attachments Description There are 2N white ball ...

  5. Codeforces 603A - Alternative Thinking - [字符串找规律]

    题目链接:http://codeforces.com/problemset/problem/603/A 题意: 给定一个 $01$ 串,我们“交替子序列”为这个串的一个不连续子序列,它满足任意的两个相 ...

  6. Codeforces Gym 100637B B. Lunch 找规律

    B. Lunch Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/100637/problem/B Des ...

  7. Codeforces 474D Flowers (线性dp 找规律)

    D. Flowers time limit per test:1.5 seconds memory limit per test:256 megabytes We saw the little gam ...

  8. codeforces D. Queue 找规律+递推

    题目链接: http://codeforces.com/problemset/problem/353/D?mobile=true H. Queue time limit per test 1 seco ...

  9. Codeforces D. Little Elephant and Interval(思维找规律数位dp)

    题目描述: Little Elephant and Interval time limit per test 2 seconds memory limit per test 256 megabytes ...

随机推荐

  1. c++生成数据程序模板

    in.cpp: #include<bits/stdc++.h> #define random(a,b) rand()%(b-a+1)+a using namespace std; cons ...

  2. jeecg 模糊查询

    1.前言 jeecg 考虑到默认模糊查询的话,会增加系统压力,导致查询慢,本来系统就挺那啥的... 2.方式一之实体赋值 实体重新赋值查询,用 * %% * 实现,我们知道 sql 中通常使用 % 去 ...

  3. WINGIDE 激活失败

     WINGIDE 7.1 激活失败  WINGIDE 7.0 激活成功 1 下载  https://www.7down.com/soft/94270.html 2 安装 3 激活 step 1: st ...

  4. [Linux]虚拟机下安装ubuntu后root密码设置

    转自:https://blog.csdn.net/zcyhappy1314/article/details/17448223 问题描述: 在虚拟机下安装了ubuntu中要输入用户名,一般情况下大家都会 ...

  5. Java 中不允许使用静态局部变量

    Java 中不允许使用静态局部变量

  6. 【转帖】lsof命令总结

    lsof命令总结 https://www.cnblogs.com/chenqionghe/p/10677179.html 一.lsof是什么 lsof (list open files)是一个列出当前 ...

  7. 三、SpringBoot整合Thymeleaf视图

    目录 3.1 Thymeleaf视图介绍 3.2 创建SpringBoot项目 3.2 配置Thymeleaf 3.3 编写Demo 3.4 小结 3.1 Thymeleaf视图介绍 先看下官网的介绍 ...

  8. Scala 系列(四)—— 数组 Array

    一.定长数组 在 Scala 中,如果你需要一个长度不变的数组,可以使用 Array.但需要注意以下两点: 在 Scala 中使用 (index) 而不是 [index] 来访问数组中的元素,因为访问 ...

  9. Flanne

    容器面临的问题 物理机A上的应用A看到的IP地址是容器A的,是172.17.0.2,在物理机B上的应用B看到的IP地址是容器B的,不巧也是172.17.0.2,当它们都注册到注册中心的时候,注册中心就 ...

  10. nrm的安装和使用

    1.安装nodejs,下载地址,http://nodejs.cn/download/,安装过程直接点击下一步即可 安装完成后cmd输入npm -v 查看当前安装的npm的版本,如下图提示所示则表示安装 ...