cf1208G Polygons 欧拉函数
链接
cf
给你两个正整数\(n\)和\(k\),询问在一个圆上你最少需要几个点构才能造出\(k\)个边数小于等于\(n\)的正多边形
思路
深受迫害,所以写的详细一点,不会请留言。
性质1
考虑加进一个\(x\)边形。那么他的因子\(d\)一定在他之前加进来了.
因为\(d\)可以完全由\(x\)的点表现出来。
如果没加\(d\),那么加\(d\)显然比加\(x\)优秀(显然)。
性质2
两个图形,让他们尽量多的重合些点是好的。
那两个图形能重合多少点呢?答案显然是固定的。
两个图形让他们一个点重合,即可得到最好的。
因为是正多边形,所以随便重合一个点,重合的情况都是一样的。
即最优的答案。
所以我们加入的\(k\)个正多边形都重合到一个点上,设这个点为\(0\)点。
联系起来
\(x\)在圆上,假设他的点为\(\frac{0}{x},\frac{1}{x}……\frac{x-1}{x}\)
由\(part2\)可以知道,0这个点上每个图形都会经过。
由\(part1\)可以知道\(x\)的点上,他的因子在之前就会加入,所以他的因子及其倍数都是原先就有的(被覆盖过)。
这个过程就是类似于暴力筛\(phi\)的过程,所以剩下的就是与他互质的数。
所以一个正\(x\)边形的贡献就是\(phi(x)\).
找出\(k\)个最小的\(phi\)就行了
其实这个题就是俄罗斯数学竞赛的题目....我同桌给我讲过类似的证明,忘记了(菜)。
代码
因为1,2不是正x边形,所以不能选为k变形
#include <bits/stdc++.h>
using namespace std;
const int _=1e6+7,limit=1e6;
int phi[_];
void Euler() {
for(int i=1;i<=limit;++i) phi[i]=i;
for(int i=2;i<=limit;++i) {
if(phi[i]==i) {
phi[i]=i-1;
for(int j=i+i;j<=limit;j+=i)
phi[j]=(phi[j]/i)*(i-1);
}
}
}
std::vector<int> ans;
int main() {
Euler();
int n,k;
cin>>n>>k;
if(k==1) return puts("3"),0;
for(int i=3;i<=n;++i) ans.push_back(phi[i]);
sort(ans.begin(),ans.end());
long long tot=0;
for(int i=0;i<k;++i) tot+=ans[i];
cout<<tot+2<<"\n";
return 0;
}
cf1208G Polygons 欧拉函数的更多相关文章
- hdu2588 GCD (欧拉函数)
GCD 题意:输入N,M(2<=N<=1000000000, 1<=M<=N), 设1<=X<=N,求使gcd(X,N)>=M的X的个数. (文末有题) 知 ...
- BZOJ 2705: [SDOI2012]Longge的问题 [欧拉函数]
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 2553 Solved: 1565[Submit][ ...
- BZOJ 2818: Gcd [欧拉函数 质数 线性筛]【学习笔记】
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 4436 Solved: 1957[Submit][Status][Discuss ...
- COGS2531. [HZOI 2016]函数的美 打表+欧拉函数
题目:http://cogs.pw/cogs/problem/problem.php?pid=2533 这道题考察打表观察规律. 发现对f的定义实际是递归式的 f(n,k) = f(0,f(n-1,k ...
- poj2478 Farey Sequence (欧拉函数)
Farey Sequence 题意:给定一个数n,求在[1,n]这个范围内两两互质的数的个数.(转化为给定一个数n,比n小且与n互质的数的个数) 知识点: 欧拉函数: 普通求法: int Euler( ...
- 51Nod-1136 欧拉函数
51Nod: http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1136 1136 欧拉函数 基准时间限制:1 秒 空间限制: ...
- 欧拉函数 - HDU1286
欧拉函数的作用: 有[1,2.....n]这样一个集合,f(n)=这个集合中与n互质的元素的个数.欧拉函数描述了一些列与这个f(n)有关的一些性质,如下: 1.令p为一个素数,n = p ^ k,则 ...
- FZU 1759 欧拉函数 降幂公式
Description Given A,B,C, You should quickly calculate the result of A^B mod C. (1<=A,C<=1000 ...
- hdu 3307 Description has only two Sentences (欧拉函数+快速幂)
Description has only two SentencesTime Limit: 3000/1000 MS (Java/Others) Memory Limit: 65536/32768 K ...
随机推荐
- Java内存泄漏的排查总结
Java内存泄漏的排查总结 https://blog.csdn.net/fishinhouse/article/details/80781673(缺图见下一条)内存泄漏的解决方案(转载)https:/ ...
- 【前端知识体系-JS相关】深入理解JavaScript原型(继承)和原型链
1. Javascript继承 1.1 原型链继承 function Parent() { this.name = 'zhangsan'; this.children = ['A', 'B', 'C' ...
- .NET Core 2.1 以下的控制台应用程序生成 EXE,且使用命令行参数动态运行控制器应用程序的示例
文章: https://stackoverflow.com/questions/44038847/vs2017-compile-netcoreapp-as-exe 引用 <ItemGroup&g ...
- tensorflow学习笔记——使用TensorFlow操作MNIST数据(1)
续集请点击我:tensorflow学习笔记——使用TensorFlow操作MNIST数据(2) 本节开始学习使用tensorflow教程,当然从最简单的MNIST开始.这怎么说呢,就好比编程入门有He ...
- ssl与ssh
openssl genrsa -out private_key.pem 1024 ssh-keygen -t rsa -C zzf073@163.com ssl是安全会话协商机制: ssh是安全访问机 ...
- C#使用SharpZipLib创建压缩文件,并指定压缩文件夹路径(解决SharpZipLib压缩长路径显示问题)
在项目中使用SharpZipLib压缩文件夹的时候,遇到如果目录较深,则压缩包中的文件夹同样比较深的问题.比如,压缩当前程序目录下的某个文件夹(D:\cx\code\program\bin\debug ...
- c# sqlserver 删除大批量数据超时
我做的项目有个功能需要进行批量删除,删除的数据量有4.5W条数据. 通过下面的sql语句删除这么多数据,直接导致结果超时,无法删除数据. ,,,......) 我查了一些资料,可能找的不全,找到了一个 ...
- 渗透常见linux命令
在拿到一个 webshell 之后,大家首先会想到去把自己的权限提升到最高,windows 我们会提升到 SYSTEM 权限,而 Linux 我们会提升到 root 权限,拿在进行 Linux 提权的 ...
- 常用linux系统监视软件
wget -O /etc/yum.repos.d/epel.repo http://mirrors.aliyun.com/repo/epel-7.repo ##epel源 yum install -y ...
- 02-MySQL 介绍和安装
MySQL 介绍和安装 1.什么是数据? 数据: 文字.图片.视频...人类认知的数据表现方式 计算机: 二进制.16进制的机器语言 基于数据的重要性和复杂性的不同,我们可能有不同的管理方式. 哪些数 ...