问题描述

LG2045


题解

费用流。

套路拆点,把\((i,j)\)拆为两个点,在这两个点之间连边:一条边流量为\(1\),费用为\(a_{i,j}\),另一条边为流量为\(INF\),费用为\(0\)(表示联通)。

然后在\((i,j)\)的出点向\((i+1,j)\),\((i,j+1)\)连边,流量\(INF\),费用\(0\),表示联通。

建立\(S,T\),分别于\((1,1),(n,n)\)相连,流量为\(k\),费用为\(0\),代表可以走\(k\)次。

跑费用最大流即可。

传纸条本质是本题的特殊情况,即\(k=2\)的情况


\(\mathrm{Code}\)

#include<bits/stdc++.h>
using namespace std; template <typename Tp>
void read(Tp &x){
x=0;char ch=1;int fh;
while(ch!='-'&&(ch>'9'||ch<'0')) ch=getchar();
if(ch=='-') ch=getchar(),fh=-1;
else fh=1;
while(ch>='0'&&ch<='9') x=(x<<1)+(x<<3)+ch-'0',ch=getchar();
x*=fh;
} const int maxn=53;
const int maxm=1000000;
const int INF=0x3f3f3f3f; int a[maxn][maxn],n,k; int Head[maxn*maxn*2],S,T;
int Next[maxm],to[maxm],tot=1,w[maxm],cost[maxm]; void add(int x,int y,int z,int c){
to[++tot]=y,Next[tot]=Head[x],Head[x]=tot,w[tot]=z,cost[tot]=c;
} int calc(int x,int y,int t){
return (x-1)*n+y+(t-1)*n*n;
} bool vis[maxm];
int dis[maxm],pre[maxm],now[maxm];
bool spfa(){
memset(vis,0,sizeof(vis));memset(dis,0xcf,sizeof(dis));
memset(pre,0,sizeof(pre));
queue<int>q;q.push(S);vis[S]=1,dis[S]=0;
now[S]=INF;
while(!q.empty()){
int x=q.front();q.pop();
vis[x]=0;
for(int i=Head[x];i;i=Next[i]){
int y=to[i],len=w[i],ct=cost[i];
if(!len||dis[y]>=dis[x]+ct) continue;
dis[y]=dis[x]+ct;now[y]=min(now[x],len);
pre[y]=i;
if(!vis[y]) q.push(y),vis[y]=1;
}
}
return dis[T]!=0xcfcfcfcf;
} int mx,ans; void upd(){
mx+=now[T],ans+=dis[T]*now[T];
int p=T;
while(p!=S){
int k=pre[p];
w[k]-=now[T],w[k xor 1]+=now[T];
p=to[k xor 1];
}
} int main(){
read(n);read(k);
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
read(a[i][j]);
}
}
S=n*n*2+1,T=S+1;
add(S,calc(1,1,1),k,0);add(calc(1,1,1),S,0,0);
add(calc(n,n,2),T,k,0);add(T,calc(n,n,2),0,0);
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
add(calc(i,j,1),calc(i,j,2),1,a[i][j]);add(calc(i,j,2),calc(i,j,1),0,-a[i][j]);
add(calc(i,j,1),calc(i,j,2),INF,0);add(calc(i,j,2),calc(i,j,1),0,0);
if(i!=n) add(calc(i,j,2),calc(i+1,j,1),INF,0),add(calc(i+1,j,1),calc(i,j,2),0,0);
if(j!=n) add(calc(i,j,2),calc(i,j+1,1),INF,0),add(calc(i,j+1,1),calc(i,j,2),0,0);
}
}
while(spfa())
upd();
printf("%d\n",ans);
return 0;
}

LG2045 方格取数加强版 费用流的更多相关文章

  1. 洛谷 - P2045 - 方格取数加强版 - 费用流

    原来这种题的解法是费用流. 从一个方格的左上走到右下,最多走k次,每个数最多拿走一次. 每次走动的流量设为1,起始点拆点成限制流量k. 每个点拆成两条路,一条路限制流量1,费用为价值相反数.另一条路无 ...

  2. 洛谷P2045 方格取数加强版(费用流)

    题意 题目链接 Sol 这题能想到费用流就不难做了 从S向(1, 1)连费用为0,流量为K的边 从(n, n)向T连费用为0,流量为K的边 对于每个点我们可以拆点限流,同时为了保证每个点只被经过一次, ...

  3. Codevs 1227 方格取数 2(费用流)

    1227 方格取数 2 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 大师 Master 查看运行结果 题目描述 Description 给出一个n*n的矩阵,每一格有一个非负整数 ...

  4. P2045 方格取数加强版

    P2045 方格取数加强版 题目描述 给出一个n*n的矩阵,每一格有一个非负整数Aij,(Aij <= 1000)现在从(1,1)出发,可以往右或者往下走,最后到达(n,n),每达到一格,把该格 ...

  5. [luogu_P2045]方格取数加强版

    [luogu_P2045]方格取数加强版 试题描述 给出一个 \(n \times n\) 的矩阵,每一格有一个非负整数 \(A_{i,j},(A_{i,j} \le 1000)\) 现在从 \((1 ...

  6. Luogu2045 方格取数加强版(K取方格数) 费用流

    题目传送门 题意:给出一个$N \times N$的方格,每个格子中有一个数字.你可以取$K$次数,每次取数从左上角的方格开始,每一次只能向右或向下走一格,走到右下角结束,沿路的方格中的数字将会被取出 ...

  7. 洛谷 P2045 方格取数加强版【费用流】

        题目链接:https://www.luogu.org/problemnew/show/P2045 题目描述 给出一个n*n的矩阵,每一格有一个非负整数Aij,(Aij <= 1000)现 ...

  8. P2045 方格取数加强版 最大费用最大流

    $ \color{#0066ff}{ 题目描述 }$ 给出一个n*n的矩阵,每一格有一个非负整数Aij,(Aij <= 1000)现在从(1,1)出发,可以往右或者往下走,最后到达(n,n),每 ...

  9. Luogu2045 方格取数加强版

    题目描述 给出一个n*n的矩阵,每一格有一个非负整数Aij,(Aij <= 1000)现在从(1,1)出发,可以往右或者往下走,最后到达(n,n),每达到一格,把该格子的数取出来,该格子的数就变 ...

随机推荐

  1. 洛谷P4173 残缺的字符串

    题目大意: 两个带通配符的字符串\(a,b\),求\(a\)在\(b\)中出现的位置 字符串长度\(\le 300000\) 考虑魔改一发\(kmp\),发现魔改不出来 于是考虑上网搜题解 然后考虑\ ...

  2. 如何在Console下面生成一个WIN32窗口

    一个小挑战? VS2017里面,新建一个控制台工程,输入名字(你不需要也成,有默认的),得到一个控制台工程. 好了,生成的代码,如下: // Win32InConsole.cpp : This fil ...

  3. vue+Element 表格中的树形数据

    template部分   只在树形的结构中显示编辑与删除按钮 这里我只是简单的做了一个 v-if 判断在操作列中 ,判断是否存在级别这个字段 <div> <el-table :dat ...

  4. Windows安装RabbitMQ并设置数据存储目录

    一.安装Elang 下载otp_win64_xx.x.exe,当前使用otp_win64_21.3.exe版本,按步骤完成安装. 下载地址:http://www.erlang.org/download ...

  5. 深度解密Go语言之unsafe

    目录 指针类型 什么是 unsafe 为什么有 unsafe unsafe 实现原理 unsafe 如何使用 获取 slice 长度 获取 map 长度 map 源码中的应用 Offsetof 获取成 ...

  6. Windows 防火墙无法更改某些设置错误代码 0x80070422

    Windows 防火墙无法更改某些设置错误代码 0x80070422 解决方法: 1.cmd ->services.msc 按下回车键打开服务 :   2.在服务界面双击打开[Windows F ...

  7. 解决静态方法调用注入的service

    在使用jpa的复杂查询时,声明了specification时声明为静态方法,导致注入的service无法使用,故想到俩种方式,一种手动注入,一种注解注入,此文使用的时注解注入: 解决静态方法调用注入的 ...

  8. pixijs shader 制作百叶窗效果

    pixijs shader 制作百叶窗效果 直接贴代码了 const app = new PIXI.Application({ transparent: true }); document.body. ...

  9. navcat搜索字符串方法

    navcat搜索字符串方法右键点击数据库 查找字符串即可..

  10. 自己动手搭建经典的3层 Asp.Net MVC

    1:IBaseDAL using System; using System.Collections.Generic; using System.Linq; using System.Linq.Expr ...