[cf 1264 C] Beautiful Mirrors with queries
题意:
你有$n$个魔镜,第$i$个魔镜有$p_{i}$的概率说你美。
从第1天开始,你会依次询问魔镜$1-n$你美不美。
若第$i$个魔镜说你美则你明天会继续询问第$i+1$个魔镜。
否则你明天会从该魔镜前面第一个复活点魔镜开始询问。初始时只有魔镜1是复活点。
当第$n$个魔镜说你美的时候你会开心的一批。
现在有$q$次操作,每次操作修改一个魔镜使其成为/不成为复活点。
每次操作之后请你求出期望多少天你能开心的一批。
$n,q\leq 2\times 10^{5}$。
题解:推出一段区间答案的简单表示形式即可。
一开始想复杂了,用期望的线性性推了个式子发现做不了。
实际上我们只需要根据最简单的思路推式子即可。
设$E_{i}$为从$i$走到$n$的期望天数。
则有$E_{i}=p_{i}\times(1+E_{i+1})+(1-p_{i})\times(1+E_{1})$。
手动消元一下$E_{1}$,得到$E_{1}=\frac{1}{p_{n}}+\frac{1}{p_{n}p_{n-1}}+\cdots +\frac{1}{p_{n}p_{n-1}\cdots p_{1}}$。
那么考虑复活点这件事,容易发现整个序列被复活点分成了若干个区间。
每个区间是独立的。即$ans=\sum{E_{[f_{i-1},f_{i}]}}$。
那么我们考虑$E_{[l,r]}$如何计算。
推广上面那个式子,得到$E_{[l,r]}=\frac{1}{p_{r}}+\frac{1}{p_{r}p_{r-1}}+\cdots +\frac{1}{p_{r}p_{r-1}\cdots p_{l}}$。
我们设$s_{i}$为$p_{1}p_{2}\cdots p_{i}$,那么有
$E_{[l,r]}=\frac{(p_{r-1}p_{r-2}\cdots p_{l}+p_{r-2}p_{r-3}\cdots p_{l}+\cdots +p_{l}+1)}{\frac{s_{r}}{s_{l-1}}}$。
我们再设$ss_{i}=s_{1}+s_{2}+\cdots +s_{i}$,那么有
$E_{[l,r]}=\frac{\frac{(ss_{r-1}-ss_{l-1})}{s_{l-1}}+1}{\frac{s_{r}}{s_{l-1}}}$。
于是只需要用一个$set$维护复活点即可做到$O(nlogn)$。
代码:
#include<bits/stdc++.h>
#define maxn 200005
#define maxm 500005
#define inf 0x7fffffff
#define mod 998244353
#define ll long long
#define debug(x) cerr<<#x<<": "<<x<<endl
#define fgx cerr<<"--------------"<<endl
#define dgx cerr<<"=============="<<endl using namespace std;
ll s[maxn],ss[maxn];
set<int> st; inline ll read(){
ll x=,f=; char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=-;
for(;isdigit(c);c=getchar()) x=x*+c-'';
return x*f;
} inline ll power(ll a,ll b){ll ans=;while(b) ans=(b&)?ans*a%mod:ans,a=a*a%mod,b>>=;return ans;}
inline ll inv(ll x){return power(x,mod-);}
inline ll mo(ll x){return x>=mod?x-mod:x;}
inline ll calc(ll l,ll r){return (mo(ss[r-]-ss[l-]+mod)*inv(s[l-])%mod+)*inv(s[r]*inv(s[l-])%mod)%mod;} int main(){
ll n=read(),q=read(); s[]=;
for(ll i=;i<=n;i++){
ll x=read()*inv()%mod;
s[i]=s[i-]*x%mod,ss[i]=(ss[i-]+s[i])%mod;
}
st.insert(),st.insert(n+);
ll ans=(ss[n-]+)%mod*inv(s[n])%mod;
while(q--){
int x=read();
set<int>::iterator it=st.lower_bound(x);
if(*it==x){
int l=*(--it);it++;int r=(*(++it));//cout<<1<<":"<<l<<" "<<r<<endl;
ans=mo(ans-calc(l,x-)+mod),ans=mo(ans-calc(x,r-)+mod),ans=mo(ans+calc(l,r-)),st.erase(x);
}
else{
int l=*(--it);it++;int r=(*it);//cout<<2<<":"<<l<<" "<<r<<endl;
ans=mo(ans-calc(l,r-)+mod),ans=mo(ans+calc(l,x-)),ans=mo(ans+calc(x,r-)),st.insert(x);
}
printf("%I64d\n",ans);
}
return ;
}
C
[cf 1264 C] Beautiful Mirrors with queries的更多相关文章
- Codeforces - 1264C - Beautiful Mirrors with queries - 概率期望dp
一道挺难的概率期望dp,花了很长时间才学会div2的E怎么做,但这道题是另一种设法. https://codeforces.com/contest/1264/problem/C 要设为 \(dp_i\ ...
- Codeforces 1264C/1265E Beautiful Mirrors with queries (概率期望、DP)
题目链接 http://codeforces.com/contest/1264/problem/C 题解 吐槽:为什么我赛后看cf的题就经常1h内做出Div.1 C, 一打cf就动不动AB题不会啊-- ...
- Codeforces Round #604 (Div. 1) - 1C - Beautiful Mirrors with queries
题意 给出排成一列的 \(n\) 个格子,你要从 \(1\) 号格子走到 \(n\) 号格子之后(相当于 \(n+1\) 号格子),一旦你走到 \(i+1\) 号格子,游戏结束. 当你在 \(i\) ...
- Codeforces Round #604 (Div. 2) E. Beautiful Mirrors
链接: https://codeforces.com/contest/1265/problem/E 题意: Creatnx has n mirrors, numbered from 1 to n. E ...
- CF 55 D. Beautiful numbers
D. Beautiful numbers 链接 题意: 求[L,R]中多少个数字可以整除它们的每一位上的数字. 分析: 要求模一些数字等于0等价于模它们的lcm等于0,所以可以记录当前出现的数字的lc ...
- cf B Very Beautiful Number
题意:给你两个数p和x,然后让你找出一个长度为p的数,把它的最后移到最前面之后得到的数是原来数字的x倍,有很多这样的数取最小. 思路:枚举最后一位,然后就可以推出整个的一个数,然后比较得到的数的第一个 ...
- CF Educational Round 23 F.MEX Queries
写了3小时 = =.这两天堕落了,昨天也刷了一晚上hihocoder比赛,还爆了零.之后得节制点了,好好准备考研.. 首先很容易想到 压缩数据 + 线段树 然后对于Pushdown真很难写..需要牵涉 ...
- [Codeforces 1265E]Beautiful Mirrors
Description 题库链接 一共有 \(n\) 个关卡,你初始在第一个关卡.通过第 \(i\) 个关卡的概率为 \(p_i\).每一轮你可以挑战一个关卡.若通过第 \(i\) 个关卡,则进入第 ...
- Codeforces Round #604 (Div. 2) E. Beautiful Mirrors 题解 组合数学
题目链接:https://codeforces.com/contest/1265/problem/E 题目大意: 有 \(n\) 个步骤,第 \(i\) 个步骤成功的概率是 \(P_i\) ,每一步只 ...
随机推荐
- Struts2 在Action中操作数据
Servlet存储数据的方式 在Servlet中,使用ServletContext对象来存储整个WebApp的数据,ServletContext中直接存储整个WebApp的公共数据,可使用set|ge ...
- Hive:数据倾斜
数据倾斜问题 数据倾斜是大数据领域绕不开的拦路虎,当你所需处理的数据量到达了上亿甚至是千亿条的时候,数据倾斜将是横在你面前一道巨大的坎.很可能有几周甚至几月都要头疼于数据倾斜导致的各类诡异的问题. 数 ...
- HeadFirst设计模式---装饰者
定义装饰者模式 装饰者模式动态地将责任附加到对象上,若要扩展功能,装饰者提供了比继承更有弹性的替代方案.这句话摘自书中,给人读得很生硬难懂.通俗地来说,装饰者和被装饰者有相同的父类,装饰者的行为组装着 ...
- Dev-C++之调试
参考这个博客https://blog.csdn.net/qq_38737992/article/details/77621299,解决了问题
- 2018年蓝桥杯B组C/C++决赛题目
自己的博客排版,自我感觉略好一点. 先放上题目. 点击查看2018年蓝桥杯B组C/C++决赛题目题解 1.换零钞 x星球的钞票的面额只有:100元,5元,2元,1元,共4种. 小明去x星旅游, ...
- clickhouse数据库
https://www.jianshu.com/p/a5bf490247ea https://www.cnblogs.com/davygeek/p/8018292.html 开源分布式数据库 htt ...
- 201871010136-赵艳强《面向对象程序设计(java)》第四周学习总结
项目 内容 这个作业属于哪个课程 <任课教师博客主页链接>https://www.cnblogs.com/nwnu-daizh/ 这个作业的要求在哪里 <作业链接地址>http ...
- 代码审计-sha()函数比较绕过
<?php $flag = "flag"; if (isset($_GET['name']) and isset($_GET['password'])) { var_dump ...
- LG4819/BZOJ2438 「中山市选2011」杀人游戏 Tarjan缩点+概率
问题描述 LG4819 BZOJ2438 题解 发现如果有一些人之间认识关系形成环,只需要问一个人就能把控整个环. \(\mathrm{Tarjan}\)缩点. 缩点之后所有入度为\(0\)的点,必须 ...
- WebSocket协议-原理篇
本篇文章主要讲述以下几点: WebSocket的原理与机制 WebSocket与Socket.io WebSocket兼容性 WebSocket的原理与机制 WebSocket协议分为两部分:握手和数 ...