python机器学习-乳腺癌细胞挖掘(博主亲自录制视频)

https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share

原文链接

https://www.kdnuggets.com/2017/06/practical-importance-feature-selection.html

Feature selection is useful on a variety of fronts: it is the best weapon against the Curse of Dimensionality; it can reduce overall training times; and it is a powerful defense against overfitting, increasing generalizability.

特征选择在各个方面都很有用:它是反对过度拟合的最佳武器它可以减少整体培训时间它是对过度拟合,增加普遍性的有力防御。

 

By Matthew Mayo, KDnuggets.

If you wanted to classify animals, for example, based on a plethora of relevant collected data, you would quickly find that all sorts of potential data attributes, or features, were relatively unhelpful for classification. For example, given that most living creatures have precisely 1 heart, this particular feature would not be beneficial, from a learning perspective. On the other hand, an attribute denoting whether or not a given animal is hoofed would likely be a powerful predictor.

如果您想对动物进行分类,例如,基于过多的相关收集数据,您会很快发现各种潜在的数据属性或特征对于分类而言相对无益。例如,鉴于大多数生物只有1颗心脏,从学习的角度来看,这一特殊功能并不是有益的。另一方面,表示给定动物是否有蹄的属性可能是强有力的预测因子。

Further, using all of these irrelevant attributes, mixed in with the powerful predictors, may actually have a negative effect on the resulting model. This is to say nothing of the increased training times that may come along with the inclusion of useless attributes, or the overfitting which may occur on the training data.

此外,使用所有这些无关属性,与强大的预测变量混合,实际上可能对结果模型产生负面影响。这也就是说,可能伴随着包含无用属性或训练数据可能出现的过度拟合而增加的训练时间。

Feature selection is the process of narrowing down a subset of features, or attributes, to be used in the predictive modeling process. Feature selection is useful on a variety of fronts: it is the best weapon against the Curse of Dimensionality; it can reduce overall training times; and it is a powerful defense against overfitting, increasing model generalizability.

特征选择是缩小要在预测建模过程中使用的特征或属性子集的过程。特征选择在各个方面都很有用:它是反对维度诅咒的最佳武器; 它可以减少整体培训时间; 它是对过度拟合的强大防御,增加了模型的普遍性。

Something I read recently -- written so eloquently and concisely by data scientist Rubens Zimbres -- alludes to the importance of feature selection from a practical standpoint:

After some experiences, using stacked neural nets, parallel neural nets, asymmetric configs, simple neural nets, multiple layers, dropouts, activation functions etc there is one conclusion: There's NOTHING like a good Feature Selection.

Having had some previous professional contacts with Rubens Zimbres in the past, I reached out to him for some elaboration. He provided the following:

Feature selection should be one of the main concerns for a Data Scientist. Accuracy and generalization power can be leveraged by a correct feature selection, based in correlation, skewness, t-test, ANOVA, entropy and information gain.

Many times a correct feature selection allows you to develop simpler and faster Machine Learning models. Consider the picture below (Support Vector Machine classification of the IRIS dataset): on the left side a wrong variable selection is presented. The linear kernel cannot handle the classification task properly, neither the radial basis function kernel. On the right side, petal width and petal length were selected as features and even the linear kernel is quite accurate. A correct variable selection, a good algorithm choice and hyperparameter tuning are the keys to success. Picture below made with Python.

特征选择应该是数据科学家的主要关注点之一。基于相关性,偏度,t检验,ANOVA,熵和信息增益,通过正确的特征选择可以利用准确性和泛化能力。

很多时候,正确的功能选择可以让您开发更简单,更快速的机器学习模型。考虑下面的图片(IRIS数据集的支持向量机分类):在左侧显示错误的变量选择。线性内核无法正确处理分类任务,也不能处理径向基函数内核。在右侧,选择花瓣宽度和花瓣长度作为特征,甚至线性内核也非常准确。正确的变量选择,良好的算法选择和超参数调整是成功的关键。下面用Python制作的图片。

In a time when ample processing power can tempt us to think that feature selection may not be as relevant as it once was, it's important to remember that this only accounts for one of the numerous benefits of informed feature selection -- decreased training times. As Zimbres notes above, with a simple concrete example, feature selection can quite literally mean the difference between valid, generalizable models and a big waste of time.

在充足的处理能力可以诱使我们认为特征选择可能不像以前那样具有相关性的时代,重要的是要记住,这仅仅是知情特征选择的众多好处之一 - 减少了训练时间。 正如Zimbres上面所说,通过一个简单的具体例子,特征选择可以完全意味着有效的,可推广的模型之间的差异和浪费大量时间。

 https://study.163.com/provider/400000000398149/index.htm?share=2&shareId=400000000398149( 欢迎关注博主主页,学习python视频资源,还有大量免费python经典文章)

The Practical Importance of Feature Selection(变量筛选重要性)的更多相关文章

  1. Feature Selection Can Reduce Overfitting And RF Show Feature Importance

    一.特征选择可以减少过拟合代码实例 该实例来自机器学习实战第四章 #coding=utf-8 ''' We use KNN to show that feature selection maybe r ...

  2. 【转】[特征选择] An Introduction to Feature Selection 翻译

    中文原文链接:http://www.cnblogs.com/AHappyCat/p/5318042.html 英文原文链接: An Introduction to Feature Selection ...

  3. 数据准备<5>:变量筛选-实战篇

    在上一篇文章<数据准备<4>:变量筛选-理论篇>中,我们介绍了变量筛选的三种方法:基于经验的方法.基于统计的方法和基于机器学习的方法,本文将介绍后两种方法在Python(skl ...

  4. the steps that may be taken to solve a feature selection problem:特征选择的步骤

    參考:JMLR的paper<an introduction to variable and feature selection> we summarize the steps that m ...

  5. [Feature] Feature selection

    Ref: 1.13. Feature selection Ref: 1.13. 特征选择(Feature selection) 大纲列表 3.1 Filter 3.1.1 方差选择法 3.1.2 相关 ...

  6. [Feature] Feature selection - Embedded topic

    基于惩罚项的特征选择法 一.直接对特征筛选 Ref: 1.13.4. 使用SelectFromModel选择特征(Feature selection using SelectFromModel) 通过 ...

  7. Feature Engineering and Feature Selection

    首先,弄清楚三个相似但是不同的任务: feature extraction and feature engineering: 将原始数据转换为特征,以适合建模. feature transformat ...

  8. 机器学习-特征工程-Feature generation 和 Feature selection

    概述:上节咱们说了特征工程是机器学习的一个核心内容.然后咱们已经学习了特征工程中的基础内容,分别是missing value handling和categorical data encoding的一些 ...

  9. 单因素特征选择--Univariate Feature Selection

    An example showing univariate feature selection. Noisy (non informative) features are added to the i ...

随机推荐

  1. k8s安装之node-autoapprove-certificate-server.yaml

    kubelet证书分为server和client两种, k8s 1.9默认启用了client证书的自动轮换,但server证书自动轮换需要用户开启.方法是: 2.1 增加 kubelet 参数(现已默 ...

  2. Spring4- 01 - Spring框架简介及官方压缩包目录介绍- Spring IoC 的概念 - Spring hello world环境搭建

    一. Spring 框架简介及官方压缩包目录介绍 主要发明者:Rod Johnson 轮子理论推崇者: 2.1 轮子理论:不用重复发明轮子. 2.2 IT 行业:直接使用写好的代码. Spring 框 ...

  3. 正确robots写法,解决百度搜索不显示缩略图问题

    网站上线http://zhimo.yuanzhumuban.cc/有一年左右时间了,百度搜索显示略缩图少之又少,通过自己这几天的观察发现. 结合百度站长平台的 robots 工具和抓取诊断工具检查后, ...

  4. 「SDOI2016」征途

    征途 Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成\(n\)段,相邻两段路的分界点设有休息站. Pine计划用\(m\)天到达T地.除第\(m\)天外,每一天晚上Pine都必须在休息 ...

  5. Linux中修改环境变量

    <1>Linux 的变量作用范围可分为两类:环境变量和本地变量 环境变量,或者称为全局变量,存在与所有的shell 中,在你登陆系统的时候就已经有了相应的系统定义的环境变量了.Linux ...

  6. php 递归算法

    通过递归实现阶乘 function multi($n){ if($n == 0){ return 1 ;//终止递归 } $value = $n * multi($n-1); return $valu ...

  7. 置换及Pólya定理

    听大佬们说了这么久Pólya定理,终于有时间把这个定理学习一下了. 置换(permutation)简单来说就是一个(全)排列,比如 \(1,2,3,4\) 的一个置换为 \(3,1,2,4\).一般地 ...

  8. YAML_09 脚本调用变量+触发器

    ansible]# vim adhttp2.yml --- - hosts: cache   remote_user: root   vars:     server: httpd   tasks: ...

  9. GitHub上的一些使用技巧

    1.搜索 转:掌握 3 个搜索技巧,在 GitHub 上快速找到实用软件资源 例如 查找位于深圳的C#开发者 2.查看文件历史提交记录 定位至需要查看的文件 修改地址栏github.com 为 git ...

  10. ipkg-nas

    http://pkg.entware.net/binaries/x86-64/ https://forum.synology.com/enu/viewtopic.php?t=95346 http:// ...