POJ - 2115 C Looooops(扩展欧几里德求解模线性方程(线性同余方程))
d.对于这个循环,
- for (variable = A; variable != B; variable += C)
statement;
给出A,B,C,求在k位存储系统下的循环次数。
例如k=4时,变量variable则只在0~15之间循环变化。
s.扩展欧几里德求解模线性方程(线性同余方程)。
设循环次数为x,
1.(A+C*x)mod 2^k=B. --> C*x=B-A(mod 2^k). (怎么变来的?)
2.C*x=B-A(mod 2^k). --> C*x+(2^k)*y=B-A.
扩展欧几里德求:C*x+(2^k)*y=gcd(C,2^k)=d.(原式:a*x+b*y=gcd(a,b)=d,以下a代表C,b代表2^k。)
如果(B-A)mod d==0(也就是(B-A)的值可以整除d,貌似表示为d|(B-A)?),则原方程C*x+(2^k)*y=B-A.的解为x'=x*((B-A)/d)。
3.利用周期性变化,求出最小的非负整数解为x''=(x'%(b/d)+(b/d))%(b/d).
因为:如果C*x+(2^k)*y=B-A.的一组整数解为(x1,y1),则它的任意整数解为(x1+k*(b/d)),y1-k*(a/d)).(k取任意整数)
(1)x'%(b/d),使解在(-b/d,b/d)
(2)+(b/d),使解在(0,2*b/d)
(3)%(b/d),得到最小整数解
为什么b/gcd(a,b),a/gcd(a,b)分别为x,y的解的最小间距?
解:假设c为x的解的最小间距,此时d为y的解的间距,所以x=x0+c*t,y=y0-d*t(x0,y0为一组特解,t为任意整数)
带入方程得:a*x0+a*c*t+b*y0-b*d*t=n,因为a*x0+b*y0=n,所以a*c*t-b*d*t=0,t不等于0时,a*c=b*d
因为a,b,c,d都为正整数,所以用最小的c,d,使得等式成立,ac,bd就应该等于a,b的最小公倍数a*b/gcd(a,b),
所以c=b/gcd(a,b),d就等于a/gcd(a,b)。
若最后所求解要求x为最小整数,那么x=(x0%(b/gcd(a,b))+b/gcd(a,b))%(b/gcd(a,b))即为x的最小整数解。
x0%(b/gcd(a,b))使解落到区间-b/gcd(a,b)~b/gcd(a,b),再加上b/gcd(a,b)使解在区间0~2*b/gcd(a,b),
再模上b/gcd(a,b),则得到最小整数解(注意b/gcd(a,b)为解的最小距离,重要)
c.
- #include<iostream>
- #include<stdio.h>
- using namespace std;
- //返回d=gcd(a,b);和对应于等式ax+by=d中的x,y
- long long extend_gcd(long long a,long long b,long long &x,long long &y){
- if(a==&&b==)return -;//无最大公约数
- if(b==){x=;y=;return a;}
- long long d=extend_gcd(b,a%b,y,x);
- y-=a/b*x;
- return d;
- }
- //求逆元
- //ax=1(mod n)
- long long mod_reverse(long long a,long long n){
- long long x,y;
- long long d=extend_gcd(a,n,x,y);
- if(d==)return (x%n+n)%n;
- else return -;
- }
- int main(){
- long long A,B,C,k;
- long long a,b,x,y;
- long long d;
- while(~scanf("%lld%lld%lld%lld",&A,&B,&C,&k)){
- if(A==&&B==&&C==&&k==)break;
- a=C;
- b=((long long))<<k;
- d=extend_gcd(a,b,x,y);
- if((B-A)%d==){
- x=(x*((B-A)/d))%b;
- x=(x%(b/d)+(b/d))%(b/d);
- printf("%lld\n",x);
- }
- else{
- printf("FOREVER\n");
- }
- }
- return ;
- }
ps:题解可以参考这个:http://www.cnblogs.com/My-Sunshine/p/4828600.html 当时就是看这个才懂的
POJ - 2115 C Looooops(扩展欧几里德求解模线性方程(线性同余方程))的更多相关文章
- POJ2115——C Looooops(扩展欧几里德+求解模线性方程)
C Looooops DescriptionA Compiler Mystery: We are given a C-language style for loop of type for (vari ...
- poj 2115 C Looooops 扩展欧几里德
C Looooops Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 23616 Accepted: 6517 Descr ...
- POJ 2115 C Looooops (扩展欧几里德 + 线性同余方程)
分析:这个题主要考察的是对线性同余方程的理解,根据题目中给出的a,b,c,d,不难的出这样的式子,(a+k*c) % (1<<d) = b; 题目要求我们在有解的情况下求出最小的解,我们转 ...
- POJ 2115 C Looooops扩展欧几里得
题意不难理解,看了后就能得出下列式子: (A+C*x-B)mod(2^k)=0 即(C*x)mod(2^k)=(B-A)mod(2^k) 利用模线性方程(线性同余方程)即可求解 模板直达车 #incl ...
- POJ 2115 C Looooops(扩展欧几里得应用)
题目地址:POJ 2115 水题. . 公式非常好推.最直接的公式就是a+n*c==b+m*2^k.然后能够变形为模线性方程的样子,就是 n*c+m*2^k==b-a.即求n*c==(b-a)mod( ...
- POJ 2115 C Looooops(扩展欧几里得)
辗转相除法(欧几里得算法) 时间复杂度:在O(logmax(a, b))以内 int gcd(int a, int b) { if (b == 0) return a; return gcd(b, a ...
- poj 2115 C Looooops(扩展gcd)
题目链接 这个题犯了两个小错误,感觉没错,结果怒交了20+遍,各种改看别人题解,感觉思路没有错误,就是wa. 后来看diccuss和自己查错,发现自己的ecgcd里的x*(a/b)写成了x*a/b.还 ...
- POJ 2115 C Looooops(模线性方程)
http://poj.org/problem?id=2115 题意: 给你一个变量,变量初始值a,终止值b,每循环一遍加c,问一共循环几遍终止,结果mod2^k.如果无法终止则输出FOREVER. 思 ...
- poj2115-C Looooops(扩展欧几里德算法)
本题和poj1061青蛙问题同属一类,都运用到扩展欧几里德算法,可以参考poj1061,解题思路步骤基本都一样.一,题意: 对于for(i=A ; i!=B ;i+=C)循环语句,问在k位存储系统中循 ...
随机推荐
- Scrapy学习-5-下载图片实例
1. 在项目下创建一个images文件用于存放图片 2. 载图片相关模块 pip install pillow 3.修改配置文件,激活pipelines ITEM_PIPELINES = { 'Art ...
- Spring 定时器 定时访问数据库并发送邮件
我这里有两个案例的方法: 第一种:使用Spring quartz: 我这里使用的jar:spring-context-support.jar.quartz-1.6.5.jar ============ ...
- (8)C#连sqlserver
str="Data Source=ip; Network Library=DBMSSOCN; Initial Catalog=数据库; User ID=sa; Password=xx&quo ...
- C# 多线程小试牛刀
前言 昨天在上班时浏览博问,发现了一个问题,虽然自己在 C# 多线程上没有怎么尝试过,看了几遍 CLR 中关于 线程的概念和讲解(后面三章).也想拿来实践实践.问题定义是这样的: 对于多线程不是很懂, ...
- LightOJ1234 Harmonic Number 调和级数求和
[题目] [预备知识] ,其中r是欧拉常数,const double r= 0.57721566490153286060651209; 这个等式在n很大 的时候 比较精确. [解法]可以在 n较小的时 ...
- JavaScript 层
代码Code highlighting produced by Actipro CodeHighlighter (freeware)http://www.CodeHighlighter.com/--& ...
- 高仿微信实现左滑显示删除button功能
在实际项目中删除列表中的某一项是很常见的功能.传统的做法能够使用长按监听器等,而如今流行的做法是左滑弹出删除button,微信,QQ等都是这么做的,以下做一个演示样例,代码例如以下: 主页面MainA ...
- 【C#】高级语言特有的单例模式
public class Singleton { private Singleton () { } // 变量标记为 readonly.第一次引用类的成员或创建实例时,仅仅实例化一次instance对 ...
- 用Meta 取消流量器缓存方便调试
<!-- 禁止浏览器从本地缓存中调阅页面.--> <meta http-equiv="pragram" content="no-cache"& ...
- font-family,font-size,color
CreateTime--2017年12月20日16:43:35 Author:Marydon css设置字体样式 1.font-family 语法:属性值可以有一个或多个,多个值之间使用逗号隔开. ...